Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:51:37.746Z Has data issue: false hasContentIssue false

Live, dead, and fossil mollusks in Florida freshwater springs and spring-fed rivers: Taphonomic pathways and the formation of multisourced, time-averaged death assemblages

Published online by Cambridge University Press:  20 July 2020

Kristopher M. Kusnerik
Affiliation:
Division of Invertebrate Paleontology, Florida Museum of Natural History and Department of Geological Sciences, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: kmkusnerik@ufl.edu
Guy H. Means
Affiliation:
Florida Geological Survey, Tallahassee, Florida32303, U.S.A. E-mail: Guy.Means@dep.state.fl.us
Roger W. Portell
Affiliation:
Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: portell@flmnh.ufl.edu, alshinakannai@ufl.edu, monroem@mail.usf.edu, mkowalewski@flmnh.ufl.edu
Mark Brenner
Affiliation:
Department of Geological Sciences and Land Use and Environmental Change Institute, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: brenner@ufl.edu
Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia, 2232. E-mail: qhx@ansto.gov.au
Alshina Kannai
Affiliation:
Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: portell@flmnh.ufl.edu, alshinakannai@ufl.edu, monroem@mail.usf.edu, mkowalewski@flmnh.ufl.edu
Ryan Means
Affiliation:
Coastal Plains Institute, Crawfordville, Florida32327, U.S.A. E-mail: ryan@coastalplains.org
Mariah A. Monroe
Affiliation:
Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: portell@flmnh.ufl.edu, alshinakannai@ufl.edu, monroem@mail.usf.edu, mkowalewski@flmnh.ufl.edu
Michał Kowalewski
Affiliation:
Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, Gainesville, Florida32611, U.S.A. E-mail: portell@flmnh.ufl.edu, alshinakannai@ufl.edu, monroem@mail.usf.edu, mkowalewski@flmnh.ufl.edu

Abstract

Taphonomic processes are informative about the magnitude and timing of paleoecological changes but remain poorly understood with respect to freshwater invertebrates in spring-fed rivers and streams. We compared taphonomic alteration among freshwater gastropods in live, dead (surficial shell accumulations), and fossil (late Pleistocene–early Holocene in situ sediments) assemblages from two Florida spring-fed systems, the Wakulla and Silver/Ocklawaha Rivers. We assessed taphonomy of two gastropod species: the native Elimia floridensis (n = 2504) and introduced Melanoides tuberculata (n = 168). We quantified seven taphonomic attributes (aperture condition, color, fragmentation, abrasion, juvenile spire condition, dissolution, and exterior luster) and combined those attributes into a total taphonomic score (TT). Fossil E. floridensis specimens exhibited the greatest degradation (highest TT scores), whereas live specimens of both species were least degraded. Specimens of E. floridensis from death assemblages were less altered than fossil specimens of the same species. Within death assemblages, specimens of M. tuberculata were significantly less altered than specimens of E. floridensis, but highly degraded specimens dominated in both species. Radiocarbon dates on fossils clustered between 9792 and 7087 cal BP, whereas death assemblage ages ranged from 10,692 to 1173 cal BP. Possible explanations for the observed taphonomic patterns include: (1) rapid taphonomic shell alteration, (2) prolonged near-surface exposure to moderate alteration rates, and/or (3) introduction of reworked fossil shells into surficial assemblages. Combined radiocarbon dates and taphonomic analyses suggest that all these processes may have played a role in death assemblage formation. In these fluvial settings, shell accumulations develop as a complex mixture of specimens derived from multiple sources and characterized by multimillennial time-averaging. These findings suggest that, when available, fossil assemblages may be more appropriate than death assemblages for assessing preindustrial faunal associations and recent anthropogenic changes in freshwater ecosystems.

Type
Articles
Copyright
Copyright © 2020 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.v9s4mw6qt

References

Literature Cited

Alin, S., and Cohen, A. S.. 2004. The live, the dead, and the very dead: taphonomic calibration of the recent record of paleontological change in Lake Tanganyika, East Africa. Paleobiology 30:4481.10.1666/0094-8373(2004)030<0044:TLTDAT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Aslan, A., and Behrensmeyer, A. K.. 1996. Taphonomy and time resolution of bone assemblages in a contemporary fluvial system: the East Fork River, Wyoming. Palaios 11:411421.10.2307/3515209CrossRefGoogle Scholar
Balsillie, J. H., and Donoghue, J. F.. 2011. Northern Gulf of Mexico sea-level history for the past 20,000 years. Pp. 5369in Buster, N. A. and Holmes, C. W., eds. Gulf of Mexico: origin, waters, and biota. Texas A&M University Press, College Station.Google Scholar
Balsillie, J. H., Means, G. H., Dunbar, J. S., and Means, R.. 2005. Geocarchaeological consideration of the Ryan-Harley Site (8JE1004) in the Wacissa River, northern Florida. Bulletin of the Florida Museum of Natural History 45:541562.Google Scholar
Barquín, J., and Scarsbrook, M.. 2008. Management and conservation strategies for coldwater springs. Aquatic Conservation: Marine and Freshwater Ecosystems 18:580591.10.1002/aqc.884CrossRefGoogle Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211227.10.1017/S0094837300006941CrossRefGoogle Scholar
Behrensmeyer, A. K. 1987. Miocene fluvial facies and vertebrate taphonomy in northern Pakistan. In F. G. Ethridge, R. M. Flores, and M.D. Harvey, eds. Recent developments in fluvial sedimentology. SEPM Special Publication 39:169–176.10.2110/pec.87.39.0169CrossRefGoogle Scholar
Behrensmeyer, A. K. 1988. Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeoecology 63:183199.10.1016/0031-0182(88)90096-XCrossRefGoogle Scholar
Behrensmeyer, A. K., and Chapman, R. E.. 1993. Models and simulations of time-averaging in terrestrial vertebrate accumulations. Short Courses in Paleontology (Taphonomic Approaches to Time Resolution in Fossil Assemblages) 6:125149.10.1017/S2475263000001082CrossRefGoogle Scholar
Bilbey, S. A. 1999. Taphonomy of the Cleveland-Lloyd Dinosaur Quarry in the Morrison Formation, central Utah—a lethal spring-fed pond. In D. D. Gillette, ed. Vertebrate paleontology in Utah. Miscellaneous Publication 99–1:122–133. Utah Geological Survey, Salt Lake City.Google Scholar
Boaz, N. T., and Behrensmeyer, A. K.. 1976. Hominid taphonomy: transport of human skeletal parts in an artificial fluviatile environment. American Journal of Physical Anthropology 45:5360.10.1002/ajpa.1330450107CrossRefGoogle Scholar
Briggs, D. J., Golbertson, D. D., and Harris, A. L.. 1990. Molluscan taphonomy in a braided river environment and its implications for studies of Quaternary cold-stage river deposits. Journal of Biogeography 17:623637.10.2307/2845144CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Brown, M. E., Kowalewski, M., Neves, R. J., Cherry, D. S., and Schreiber, M. E.. 2005. Freshwater mussel shells as environmental chronicles: geochemical and taphonomic signatures of mercury-related extirpations in the North Fork Holston River, Virginia. Environmental Science and Technology 39:14551462.10.1021/es048573pCrossRefGoogle ScholarPubMed
Bush, S. L., Santos, G. M., Xu, X., Southon, J. R., Thiagarajan, N., Hines, S. K., and Adkins, J. F.. 2013. Simple, rapid, and cost effective: a screening method for 14C analysis of small carbonate samples. Radiocarbon 55:631640.10.1017/S0033822200057787CrossRefGoogle Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A.. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381402.10.1666/0094-8373(2003)029<0381:QEOTIT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Clench, W. J. 1969. Melanoides tuberculata (Muller) in Florida. The Nautilus 83:72.Google Scholar
Coard, R., and Dennell, R. W.. 1995. Taphonomy of some articulated skeletal remains: transport potential in an artificial environment. Journal of Archaeological Science 22:441448.10.1006/jasc.1995.0043CrossRefGoogle Scholar
Cohen, A. S. 1989. The taphonomy of gastropod shell accumulations in large lakes: an example from Lake Tanganyika, Africa. Paleobiology 15:2645.10.1017/S0094837300009167CrossRefGoogle Scholar
Corrao, N. M., Darby, P. C., and Pomory, C. M.. 2006. Nitrate impacts on the Florida apple snail, Pomacea paludosa. Hydrobiologia 568:135143.10.1007/s10750-006-0199-8CrossRefGoogle Scholar
Covich, A. P. 2010. Winning the biodiversity arms race among freshwater gastropods: competition and coexistence through shell variability and predator avoidance. Hydrobiologia 653:191215.10.1007/s10750-010-0354-0CrossRefGoogle Scholar
Cristini, P. A., and de Francesco, C. G.. 2017. Molluscan taphonomic patterns below the sediment-water interface in freshwater shallow lakes from the southeastern Pampa Plain, Argentina. Palaios 32:528542.CrossRefGoogle Scholar
Cummins, R. H. 1994. Taphonomic processes in modern freshwater molluscan death assemblages: implications for the freshwater fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 108:5573.CrossRefGoogle Scholar
Davison, A. C., and Hall, P.. 1992. On the basis and variability of bootstrap and cross-validation estimate of error rate in discrimination problems. Biometrika 79:279284.CrossRefGoogle Scholar
Dexter, T. A., Kaufman, D. S., Krause, R. A., Barbour Wood, S. L., Simões, M. G., Huntley, J. W., Yanes, Y., Romanek, C. S., and Kowalewski, M.. 2014. A continuous multi-millennial record of surficial bivalve mollusk shells from the São Paulo Bight, Brazilian shelf. Quaternary Research 81:274283.CrossRefGoogle Scholar
Dominguez, J. G., Kosnik, M. A., Allen, A. P., Hua, Q., Jacob, D. E., Kaufman, D. S., and Whitacre, K.. 2016. Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour's molluscan record. Palaios 31:564575.CrossRefGoogle Scholar
do Nascimento Ritter, M. N., Erthal, F., and Coimbra, J. C.. 2013. Taphonomic signatures in molluscan fossil assemblages from the Holocene lagoon system in the northern part of the coastal plain, Rio Grande do Sul State, Brazil. Quaternary International 305:514.CrossRefGoogle Scholar
Donoghue, J. F. 2011. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change 107:1733.CrossRefGoogle Scholar
Efron, B. 1979. Bootstrap methods: another look at the jack-knife. Annals of Statistics 7:126.CrossRefGoogle Scholar
Emberton, K. C. 1988. Shell variation in a population of Polygyra septemvolva (Pulmonata: Polygyridae). Proceedings of the Academy of Natural Sciences of Philadelphia 140:285294.Google Scholar
Erthal, F., and do Nascimento Ritter, M.. 2020. Taphonomy of recent bioclastic deposits from the southern Brazil Shelf: stratigraphic potential. In S. Martínez, A. Rojas, and F. Cabrera, eds. Actualistic taphonomy in South America. Topics in Geobiology 48:1–16. Springer, New York.CrossRefGoogle Scholar
Erthal, F., Kotzian, C. B., and Simões, M. G.. 2011. Fidelity of molluscan assemblages from the Touro Passo Formation (Pleistocene–Holocene), southern Brazil: taphonomy as a tool for discovering natural baselines for freshwater communities. Palaios 26:433446.CrossRefGoogle Scholar
Erthal, F., Kotzian, C. B., and Simões, M. G.. 2014. Multi-step taphonomic alterations in fluvial mollusk shells: a case study in the Touro Passo Formation (Pleistocene–Holocene), southern Brazil. Palaios 30:388402.CrossRefGoogle Scholar
Evans, T. 2013. Fluvial taphonomy. Pp. 115142in Pokines, J. T., Symes, S. A., and Roper, C., eds. Manual of forensic taphonomy. CRC Press, Boca Raton, Fla.CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., Meldahl, K. H.. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Glass, N. H., and Darby, P.C.. 2009. The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda: Ampullariidae), shell growth and crush weight. Aquatic Ecology 43:10851093.CrossRefGoogle Scholar
Goodfriend, G. A., Ellis, G. L., and Toolin, L. T.. 1999. Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual, and geographic patterns of variation. Radiocarbon 41:149156.CrossRefGoogle Scholar
Graham, R. W. 1993. Processes of time-averaging in the terrestrial vertebrate record. Short Courses in Paleontology (Taphonomic Approaches to Time Resolution in Fossil Assemblages) 6:102124.CrossRefGoogle Scholar
Gray, J. 1988. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 62:1214.CrossRefGoogle Scholar
Hall, G., and Ritter, M.. 1995. Ocklawaha River water allocation study. St. Johns Water Management District, Palatka, Fla.Google Scholar
Hassan, G. S., Tietze, E., Cristini, P. A., and de Francesco, C. G.. 2014. Differential preservation of freshwater diatoms and mollusks in late Holocene sediments: paleoenvironmental implications. Palaios 29:612623.CrossRefGoogle Scholar
Hill, J. E., and Sowards, J.. 2015. Successful eradication of the non-native loricariid catfish Pterygoplichthys disjunctivus from the Rainbow River, Florida. Management of Biological Invasions 6:311317.10.3391/mbi.2015.6.3.11CrossRefGoogle Scholar
Hora, S. C., and Wilcox, J. B.. 1982. Estimation of error rates in several-population discriminant analysis. Journal of Marketing Research 19:5761.10.1177/002224378201900105CrossRefGoogle Scholar
Howard, L. C., Wood, P. J., Greenwood, M. T., and Rendell, H. M.. 2009. Reconstructing riverine paleo-flow regimes using subfossil insects (Coleoptera and Trichoptera): the application of the LIFE methodology to paleochannel sediments. Journal of Paleolimnology 42:453466.CrossRefGoogle Scholar
Hunt, A. P. 1991. Integrated vertebrate, invertebrate and plant taphonomy of the Fossil Forest area (Fruitland and Kirtland Formations: Late Cretaceous), San Juan County, New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 88:85107.CrossRefGoogle Scholar
Hyman, A. C., Fraser, T. K., Jacoby, C. A., Frost, J. R., and Kowalewski, M.. 2019. Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of biodiversity and faunal stability. Proceedings of the Royal Society of London B 286:20191861.Google Scholar
Ilarri, M. I., Souza, A. T., and Sousa, R.. 2015. Contrasting decay rates of freshwater bivalves’ shells: aquatic versus terrestrial habits. Limnologica 51:814.10.1016/j.limno.2014.10.002CrossRefGoogle Scholar
Ilarri, M. I., Souza, A. T., Amorim, L., and Sousa, R.. 2019. Decay and persistence of empty bivalve shells in a temperate river system. Science of the Total Environment 683:185192.CrossRefGoogle Scholar
Keen, D. H. 1990. Significance of the record provided by Pleistocene fluvial deposits and their included molluscan faunas for paleoenvironmental reconstructions and stratigraphy: case studies from English Midlands. Palaeogeography, Palaeoclimatology, Palaeoecology 80:2534.CrossRefGoogle Scholar
Kenney, W. F., Brenner, M., Curtis, J. H., Arnold, T. E., and Schelske, C. L.. 2016. A Holocene sediment record of phosphorus accumulation in shallow Lake Harris, Florida (USA) offers new perspectives on recent cultural eutrophication. PLoS ONE 11:e0147331.10.1371/journal.pone.0147331CrossRefGoogle ScholarPubMed
Kidwell, S. M. 1997. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977995.CrossRefGoogle Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.10.1126/science.1064539CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.10.1073/pnas.0707194104CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:199217.CrossRefGoogle Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation paleobiology. Journal of Paleontology 56:487522.CrossRefGoogle Scholar
Kidwell, S. M., and Bosence, D. W. J.. 1991. Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison and D. E. G. Briggs, eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:115–209. Plenum Press, New York.CrossRefGoogle Scholar
Kidwell, S. M., and Flessa, K. W.. 1996. The quality of the fossil record: populations, species, and communities. Annual Review of Earth and Planetary Sciences 24:433464.CrossRefGoogle Scholar
Kidwell, S. M., and Tomašových, A.. 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annual Review of Ecology, Evolution, and Systematics 44:539563.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G., Kaufman, D. S., and Würst, R. A.. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.CrossRefGoogle Scholar
Kosnik, M. A., Kaufman, D. S., and Hua, Q.. 2013. Radiocarbon-calibrated multiple amino-acid geochronology of Holocene molluscs from Bramble and Rib Reefs (Great Barrier Reef, Australia). Quaternary Geochronology 16:7386.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q.. Kaufman, D. S., and Zawadzki, A.. 2015. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies. Coral Reefs 34:215229.10.1007/s00338-014-1234-2CrossRefGoogle Scholar
Koster, E. H. 1987. Vertebrate taphonomy applied to the analysis of ancient fluvial systems. In F. G. Ethridge, R. M. Flores, and M. D. Harvey (eds.) Recent developments in fluvial sedimentology. Society of Economic Paleontologists and Mineralogists Special Publication 39:159–168.10.2110/pec.87.39.0159CrossRefGoogle Scholar
Kotiaho, J. A., ten Brink, B., and Harris, J.. 2016. A global baseline for ecosystem recovery. Nature 532(37).CrossRefGoogle ScholarPubMed
Kotzian, C. B., and Simões, M. G.. 2006. Taphonomy of recent freshwater molluscan death assemblages, Touro Passo Stream, Southern Brazil. Revista Brasileira de Paleontologia 9:243260.CrossRefGoogle Scholar
Kowalewski, M., and Labarbera, M.. 2004. Actualistic taphonomy: death, decay, and disintegration in contemporary settings. Palaios 19:423427.2.0.CO;2>CrossRefGoogle Scholar
Kowalewski, M., Dyreson, E., Marcot, J. D., Vargas, J. A., Flessa, K. W., and Hallman, D. P.. 1997. Phenetic discrimination of biometric simpletons: paleobiological implications of morphospecies in the lingulide brachiopod Glottidia. Paleobiology 23:444469.CrossRefGoogle Scholar
Kowalewski, M., Casebolt, S., Hua, Q., Whitacre, K. E., Kaufman, D., and Kosnik, M. A.. 2018. One fossil record, multiple time-resolutions: comparative time-averaging of mollusks and echinoids on a carbonate platform. Geology 46:5154.CrossRefGoogle Scholar
Krause, R. A., Barbour, S. L., Kowalewski, M., and Kaufman, D. S.. 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.CrossRefGoogle Scholar
Larios-Mendieta, K. L., Gerber, S., and Brenner, M.. 2018. Florida wildfires during the Holocene Climatic Optimum (9000–5000 cal yr BP). Journal of Paleolimnology 60:5166.Google Scholar
Leorri, E., and Martin, R. E.. 2009. The input of foraminiferal infaunal populations to sub-fossil assemblages along an elevational gradient in a salt marsh: application to sea-level studies in the mid-Atlantic coast of North America. Hydrobiologia 625:6981.CrossRefGoogle Scholar
Martello, A. R., Kotzian, C. B., and Erthal, F.. 2006. Quantitative fidelity of Recent freshwater mollusk assemblages from the Touro Passo River, Rio Grande do Sul, Brazil. Iheringia, Série Zoologia 96:453465.CrossRefGoogle Scholar
Martello, A. R., Kotzian, C. B., and Erthal, F.. 2018. The role of topography, river size, and riverbed grain size on the preservation of riverine mollusk shells. Journal of Paleolimnology 59:309327.CrossRefGoogle Scholar
Martínez, S., Rojas, A., Cabrera, F., and Antuña, D.. 2020. Alien species, a natural experiment in actualistic taphonomy. In S. Martínez, A. Rojas, and F. Cabrera, eds. Actualistic taphonomy in South America. Springer International, New York. Topics in Geobiology 48:61–68.10.1007/978-3-030-20625-3_4CrossRefGoogle Scholar
Meldahl, K. H., Flessa, K. W., and Cutler, A. H.. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.CrossRefGoogle Scholar
Mitsch, W. J., and Day, J. W. Jr. 2004. Thinking big with whole-ecosystem studies and ecosystem restoration- a legacy of H.T. Odum. Ecological Modelling 178:133155.CrossRefGoogle Scholar
Moore, J. R., and Varricchio, D. J.. 2018. Taphonomic pathways in vertebrate fossil assemblages illustrated by a bovine mass drowning event. Palaios 33:174184.CrossRefGoogle Scholar
Mumma, M. T., Cichra, C. E., and Sowards, J. T.. 1996. Effects of recreation on the submersed aquatic plant community of Rainbow River, Florida. Journal of Aquatic Plant Management 34:5356.Google Scholar
Munch, D. A., Toth, D. J., Huang, C., Davis, J. B., Fortich, C. M., Osburn, W. L., Philips, E. J., Quinlan, E. L., Allen, M. S., Woods, M. J., Cooney, P., Knight, R. L., Clarke, R. A., and Knight, S. L.. 2006. Fifty-year retrospective study of the ecology of Silver Springs, Florida. Special Publication SJ2007-SP4. Florida Department of Environmental Protection, Tallahassee.Google Scholar
Newell, A. J., Gower, D. J., Benton, M. J., and Tverdokhlebov, V. P.. 2007. Bedload abrasion and the in situ fragmentation of bivalve shells. Sedimentology 54:835845.10.1111/j.1365-3091.2007.00862.xCrossRefGoogle Scholar
Nico, L. G., Jelks, H. L., and Tuten, T.. 2009. Non-native suckermouth armored catfishes in Florida: description of nest borrows and burrow colonies with assessment of shoreline conditions. Aquatic Nuisance Species Research Program 9:130.Google Scholar
O'Donoughue, J. M. G. 2015. The archaeology of northeast Florida springs. Ph.D. dissertation. University of Florida. Gainesville.Google Scholar
Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27:55112.CrossRefGoogle Scholar
Olszewski, T. 1999. Taking advantage of time-averaging. Paleobiology 25:226238.CrossRefGoogle Scholar
Peres, T., and Simons, E.. 2006. Early Holocene vertebrate paleontology In S. D. Webb, ed. First Floridians and last mastodons: the Page-Ladson site in the Aucilla River. Springer Netherlands, Dordrecht. Topics in Geobiology 26:461–470.CrossRefGoogle Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.CrossRefGoogle Scholar
Pigati, J. S., Quade, J., Shahanan, T. M., and Haynes, C. V. Jr. 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204:3345.CrossRefGoogle Scholar
Pigati, J. S., Rech, J. A., and Nekola, J. C.. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.CrossRefGoogle Scholar
Pigati, J. S., McGeehin, J. P., Muhs, D. R., and Bettis, E. A. III. 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76:114128.CrossRefGoogle Scholar
Pigati, J. S., McGeehin, J., Muhs, D. R., Grimley, D. A., Nekola, J. C.. 2015. Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae, and Discidae). Aeolian Research 16:2533.CrossRefGoogle Scholar
Pilsbry, H. A. 1930. Anatomy and relationships of some American Helicidae and Polygyridae. Proceedings of the Academy of Natural Sciences of Philadelphia 82:303327.Google Scholar
Pilsbry, H. A. 1940. Land mollusca of North America (north of Mexico), Vol. I, Part 2. Academy of Natural Sciences of Philadelphia Monographs 3.Google Scholar
Pisano, M. F., Pommáres, N. N., Luengo, M. S., and Fucks, E. E.. 2017. Comparative taphonomy of mollusk assemblages in Quaternary freshwater sequences from the Salado River Basin, Buenos Aires. Ameghiniana 55:197209.CrossRefGoogle Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P.G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.. 2013. IntCal 13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:18691887.CrossRefGoogle Scholar
Rogers, R. R., Kidwell, S. M., Deino, A. L., Mitchell, J. P., Nelson, K., and Thole, J. T.. 2016. Age, correlation, and lithostratigraphic revision of the upper Cretaceous (Campanian) Judith River Formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. Journal of Geology 124:99135.CrossRefGoogle Scholar
Saunders, J. J. 1975. Late Pleistocene vertebrates of the Western Ozark Highlands, Missouri. Ph.D. dissertation. University of Arizona, Tucson.Google Scholar
Scarponi, D., Kaufman, D., Amorosi, A., and Kowalewski, M.. 2013. Sequence stratigraphy and the fossil record. Journal of Geology 41:239242.CrossRefGoogle Scholar
Schrenk, F., Bromage, T. G., Gorthner, A., and Sandrock, O.. 1995. Paleoecology of the Malawi Rift: vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. 1995. Journal of Human Evolution 28:5970.Google Scholar
Shrestha, R. K., Stein, T. V., and Clark, J.. 2007. Valuing nature-based recreation in public natural areas of the Apalachicola River region, Florida. Journal of Environmental Management 85:977985.CrossRefGoogle ScholarPubMed
Smith, R. M. H., Sidor, C. A., Tabor, N. J., and Steyer, J. S.. 2015. Sedimentology and vertebrate taphonomy of the Moradi Formation of northern Niger: a Permian wet desert in the tropics of Pangaea. Palaeogeography, Palaeoclimatology, Palaeoecology 440:128141.CrossRefGoogle Scholar
Spechler, R. M., and Halford, K. J.. 2001. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida. Water-Resources Investigation Report 2001-4182. United States Geological Survey Caribbean–Florida Water Science Center, Lutz, Fla.Google Scholar
Spicer, R. A. 1991. Plant taphonomic processes. In P. A. Allison and D. E. G. Briggs, eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:71–113. Plenum Press, New York.10.1007/978-1-4899-5034-5_3CrossRefGoogle Scholar
Spicer, R. A., and Greer, A. G.. 1986. Plant taphonomy in fluvial and lacustrine systems. Studies in Geology, Notes for a Short Course 15:1026.CrossRefGoogle Scholar
Strayer, D. L., and Malcom, H. M.. 2007. Shell decay rates of native and alien freshwater bivalves and implications for habitat engineering. Freshwater Biology 52:16111617.CrossRefGoogle Scholar
Taylor, D. W. 1988. Aspects of freshwater mollusc ecological biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 62:511576.CrossRefGoogle Scholar
Tietze, E., and de Francesco, C. G.. 2014. Taphonomic differences in molluscan shell preservation in freshwater environments from the southeastern Pampas, Argentina. Palaios 29:501511.CrossRefGoogle Scholar
Tietze, E., and de Francesco, C. G.. 2017. Compositional fidelity and taphonomy of freshwater mollusks from three Pampean shallow lakes of Argentina. Ameghiniana 54:208223.CrossRefGoogle Scholar
Tomašových, A., Fürsich, F. T., and Olszewski, T. D.. 2006. Modeling shelliness and alteration in shell beds: variation in hardpart input and burial rates leads to opposing predictions. Paleobiology 32:278298.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., Barber, R. F., and Kaufman, D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., and Barber, R. F.. 2016. Inferring skeletal production from time-averaged assemblages: skeletal loss pulls the timing of production pulses towards the modern period. Paleobiology 42:5476.CrossRefGoogle Scholar
Tomašových, A., Schlögl, J., Biroň, A., Hudáčková, N., and Mikuš, T.. 2017. Taphonomic clock and bathymetric dependence of cephalopod preservation in bathyal, sediment-starved environments. Palaios 32:135152.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., Alexander, C. R., and Kaufman, D. S.. 2019. Millennial-scale age offsets within fossil assemblages: result of bioturbation below the taphonomic active zone and out-of-phase production. Paleoceanography and Paleoclimatology 34:954977.CrossRefGoogle Scholar
Tompa, A. S. 1976. A comparative study of the ultrastructure and mineralogy of calcified land snail eggs (Pulmonata: Stylommatophora). Journal of Morphology 150:861887.CrossRefGoogle Scholar
Webb, G. E., Price, G. J., Nothdurft, L. D., Deer, L., and Rintoul, L.. 2007. Cryptic meteoric diagenesis in freshwater bivalves: implications for radiocarbon dating. Geology 35:803806.10.1130/G23823A.1CrossRefGoogle Scholar
Webb, S. D. 2006. Mastodon tusk recovery. In S. D. Webb, ed. First Floridians and last mastodons: the Page-Ladson site in the Aucilla River. Topics in Geobiology 26:333–341. Springer, New York.CrossRefGoogle Scholar
Webb, S. D., and Simons, E.. 2006. Vertebrate paleontology. In S. D. Webb, ed. First Floridians and last mastodons: the Page-Ladson site in the Aucilla River. Topics in Geobiology 26:215–246. Springer, New York.CrossRefGoogle Scholar
Wetland Solutions, Inc. 2014. Silver Springs restoration plan: report for the Howard T. Odum Florida Springs Institute. Gainesville, Fla. floridaspringsinstitute.org/wp-content/uploads/2018/07/Silver_Springs_Restoration_Plan.pdf.Google Scholar
WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Curie, B., DeGusta, D., Hart, W. K., Murray, A. M., Renne, P. R., Jolly-Saad, M. C., Stewart, K. M., and White, T. D.. 2009. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science 326:6565e.CrossRefGoogle ScholarPubMed
Wolverton, S., Randklev, C. R., and Kennedy, J. H.. 2010. A conceptual model for freshwater mussel (family: Unionidae) remain preservation in zooarchaeological remains. Journal of Archaeological Science 37:164173.10.1016/j.jas.2009.09.028CrossRefGoogle Scholar
Wood, J. M., Thomas, R. G., and Visser, J.. 1988. Fluvial processes and vertebrate taphonomy: the upper Cretaceous Judith River Formation, south-central Dinosaur Provincial Park, Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 66:127143.CrossRefGoogle Scholar
Yanes, Y. 2013. Anthropogenic effect recorded in the live-dead compositional fidelity of land snail assemblages from San Salvador Island, Bahamas. Biodiversity and Conservation 21:34453466.CrossRefGoogle Scholar
Yanes, Y., Tomašových, A., Kowalewski, M., Castillo, C., Aguirre, J., Alonso, M. R., and Ibáñez, M.. 2008. Taphonomy and compositional fidelity of Quaternary fossil assemblages of terrestrial gastropods from carbonate-rich environments of the Canary Islands. Lethaia 41:235256.10.1111/j.1502-3931.2007.00047.xCrossRefGoogle Scholar
Yanes, Y., Aguirre, J., Alonso, M., Ibáñez, M., and Delgado, A.. 2011. Ecological fidelity of Pleistocene–Holocene land snail shell assemblages preserved in carbonate-rich paleosols. Palaios 26:406419.CrossRefGoogle Scholar
Yanes, Y., Al-Qattan, N. M., Rech, J. A., Pigati, J. S., Dodd, J. P., Nekola, J. C.. 2019. Overview of the oxygen isotope systematics of land snails from North America. Quaternary Research 91:329344.CrossRefGoogle Scholar