Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:49:34.245Z Has data issue: false hasContentIssue false

Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling

Published online by Cambridge University Press:  09 May 2013

Gregory P. Wilson*
Affiliation:
Department of Biology and Burke Museum of Natural History and Culture, 24 Kincaid Hall, University of Washington, Seattle, Washington 98195-1800 U.S.A. E-mail: gpwilson@u.washington.edu

Abstract

The Cretaceous/Tertiary (K/Pg) mass extinction has long been viewed as a pivotal event in mammalian evolutionary history, in which the extinction of non-avian dinosaurs allowed mammals to rapidly expand from small-bodied, generalized insectivores to a wide array of body sizes and ecological specializations. Many studies have used global- or continental-scale taxonomic databases to analyze this event on coarse temporal scales, but few studies have documented morphological diversity of mammalian paleocommunities on fine spatiotemporal scales in order to examine ecomorphological selectivity and ecospace filling across this critical transition. Focusing on well-sampled and temporally well-constrained mammalian faunas across the K/Pg boundary in northeastern Montana, I quantified dental-shape disparity and morphospace occupancy via landmark- and semilandmark-based geometric morphometrics and mean body size, body-size disparity, and body-size structure via body-mass estimates.

My results reveal several key findings: (1) latest Cretaceous mammals, particularly metatherians and multituberculates, had a greater ecomorphological diversity than is generally appreciated, occupying regions of the morphospace that are interpreted as strict carnivory, plant-dominated omnivory, and herbivory; (2) the decline in dental-shape disparity and body-size disparity across the K/Pg boundary shows a pattern of constructive extinction selectivity against larger-bodied dietary specialists, particularly strict carnivores and taxa with plant-based diets, that suggests the kill mechanism was related to depressed primary productivity rather than a globally instantaneous event; (3) the ecomorphological recovery in the earliest Paleocene was fueled by immigrants, namely three multituberculate families (taeniolabidids, microcosmodontids, eucosmodontids) and to a lesser extent archaic ungulates; and (4) despite immediate increases in the taxonomic richness of eutherians, their much-celebrated post-K/Pg ecomorphological expansion had a slower start than is generally perceived and most likely only began 400,000 to 1 million years after the extinction event.

Type
Featured Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48:107118.CrossRefGoogle ScholarPubMed
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alvarez, W. 1986. Toward a theory of impact crises. Eos 67:649, 653–655, 658.Google Scholar
Anderson, T. W. 1958. An introduction to multivariate analysis. Wiley, New York.Google Scholar
Archer, M. 1978. The nature of the molar-premolar boundary in marsupials and reinterpretation of the homology of marsupial cheekteeth. Memoirs of the Queensland Museum 18:157164.Google Scholar
Archibald, J. D. 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Sciences 122:1286.Google Scholar
Archibald, J. D. 1983. Structure of the K-T mammal radiation in North America: speculations on turnover rates and trophic structure. Acta Palaeontologica Polonica 28:717.Google Scholar
Archibald, J. D. 1993. The importance of phylogenetic analysis for the assessment of species turnover: a case history of Paleocene mammals in North America. Paleobiology 19:127.CrossRefGoogle Scholar
Archibald, J. D. 1996. Dinosaur extinction and the end of an era: what the fossils say. Columbia University Press, New York.Google Scholar
Archibald, J. D. 2011. Extinction and radiation: how the fall of dinosaurs led to the rise of mammals. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Archibald, J. D., and Bryant, L. J. 1990. Differential Cretaceous/Tertiary extinctions of nonmarine vertebrates: evidence from northeastern Montana. InSharpton, V. L., and Ward, P. D., eds. Global catastrophes in earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247:549562.CrossRefGoogle Scholar
Archibald, J. D., Zhang, Y., Harper, T., and Cifelli, R. L. 2011. Protungulatum, confirmed Cretaceous occurrence of an otherwise eutherian (placental?) mammal. Journal of Mammalian Evolution 18:153161.CrossRefGoogle Scholar
Badgley, C. 2003. The multiple scales of biodiversity. Paleobiology 29:1113.2.0.CO;2>CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D., and Mitchell, C. E. 2012. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:34283433.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., Hook, R. W., Badgley, C., Boy, J. A., Chapman, R. E., Dodson, P., Gastaldo, R. A., Graham, R. W., Martin, L. D., Olsen, P. E., Spicer, R. A., Taggart, R. E., and Wilson, M. V. H. 1992. Paleoenvironmental contexts and taphonomic modes. Pp. 15136inBehrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Benton, M. J. 1983. Dinosaur success in the Triassic: a non-competitive ecological model. Quarterly Review of Biology 58:2955.CrossRefGoogle Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews 62:305338.CrossRefGoogle Scholar
Benton, M. J. 1991. Extinction, biotic replacements, and clade interactions. Pp. 89102inDudley, E. C., ed. The unity of evolutionary biology. Dioscorides Press, Portland, Ore.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Berg, L. 2011. Mammalian femora from the Cretaceous-Paleogene boundary of northeastern Montana. Journal of Vertebrate Paleontology 31 (Suppl. to 3):70A.Google Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. 2007. The delayed rise of present-day mammals. Nature 446:507512.CrossRefGoogle ScholarPubMed
Bloch, J. I., Rose, K. D., and Gingerich, P. D. 1998. New species of Batodonoides (Lipotyphla, Geolabididae) from the Early Eocene of Wyoming: smallest known mammal? Journal of Mammalogy 79:804827.CrossRefGoogle Scholar
Borths, M., and Hunter, J. P. 2008. Gimme shelter? Locomotor trends and mammalian survivorship at the K-Pg boundary. Journal of Vertebrate Paleontology 28:5455A.Google Scholar
Breithaupt, B. H. 1982. Paleontology and paleoecology of the Lance Formation (Maastrichtian), east flank of Rock Springs Uplift, Sweetwater County, Wyoming. Contributions to Geology, University of Wyoming 21:123151.Google Scholar
Bruce, P. 2012. Resampling stats Excel add-in, Version 4.0. Institute of Statistics Education, Arlington, Va.Google Scholar
Brusatte, S. L., Butler, R. J., Prieto-Márquez, A., and Norell, M. A. 2012. Dinosaur morphological diversity and the end-Cretaceous extinction. Nature Communications 3:804808.CrossRefGoogle ScholarPubMed
Buffetaut, E. 1984. Palaeontology: selective extinctions and terminal Cretaceous events. Nature 310:276.CrossRefGoogle Scholar
Buffetaut, E. 1990. Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary. Tectonophysics 171:337345.CrossRefGoogle Scholar
Calede, J. J., and Wilson, G. P. 2011. The last supper before the impact: mammalian diets across the Cretaceous-Paleogene boundary. Journal of Vertebrate Paleontology 31 (Suppl. to No. 3):82A.Google Scholar
Campione, N. E., and Evans, D. C. 2011. Cranial growth and variation in edmontosaurs (Dinosauria: Hadrosauridae): implications for latest Cretaceous megaherbivore diversity in North America. PLoS ONE 6:e25186.CrossRefGoogle ScholarPubMed
Case, J. A., Goin, F. J., and Woodburne, M. O. 2005. “South American” marsupials from the Late Cretaceous of North America and the origin of marsupial cohorts. Journal of Mammalian Evolution 12:461494.CrossRefGoogle Scholar
Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S., Sabbarao, K., and Thordarson, T. 2009. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research 114:138.CrossRefGoogle Scholar
Christensen, H. 2011. Mammalian community change after the K/T extinction in North America. Geological Society of America Abstracts with Programs 43:543.Google Scholar
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development 4:170188.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N. 2004. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation. Evolution and Development 6:260274.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Cifelli, R. L., Eberle, J. J., Lofgren, D. L., Lillegraven, J. A., and Clemens, W. A. 2004. Mammalian biochronology of the latest Cretaceous. Pp. 2142inWoodburne, M. O., ed. Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York.CrossRefGoogle Scholar
Clemens, W. A. 1964. Fossil mammals of the type Lance Formation, Wyoming, Part I. Introduction and Multituberculata. University of California Publications in Geological Sciences 48:1105.Google Scholar
Clemens, W. A. 1966. Fossil mammals of the type Lance Formation, Wyoming, Part II. Marsupialia. University of California Publications in Geological Sciences 62:1122.Google Scholar
Clemens, W. A. 1968. A mandible of Didelphodon vorax (Marsupialia, Mammalia). Los Angeles County Museum Contributions in Science 133:111.Google Scholar
Clemens, W. A. 1973. Fossil mammals of the type Lance Formation, Wyoming, Part III. Eutheria and summary. University of California Publications in Geological Sciences 94:1102.Google Scholar
Clemens, W. A. 2001. Patterns of mammalian evolution across the Cretaceous-Tertiary boundary. Mitteilungen aus dem Museum für Naturkunde in Berlin 77:175191.Google Scholar
Clemens, W. A. 2002. Evolution of the mammalian fauna across the Cretaceous-Tertiary boundary in northeastern Montana and other areas of the Western Interior. Pp. 217245in Hartman et al. 2002.CrossRefGoogle Scholar
Clemens, W. A. 2004. Purgatorius (Plesiadapiformes, Primates?, Mammalia), a Paleocene immigrant into northeastern Montana: stratigraphic occurrences and incisor proportions. Bulletin of the Carnegie Museum of Natural History 36:313.CrossRefGoogle Scholar
Clemens, W. A. 2006. Early Paleocene (Puercan) peradectid marsupials from northeastern Montana, North American Western Interior. Palaeontographica, Abteilung A 277:1931.CrossRefGoogle Scholar
Clemens, W. A. 2010. Were immigrants a significant part of the earliest Paleocene mammalian fauna of the North American Western Interior? Vertebrata PalAsiatica 48:285307.Google Scholar
Clemens, W. A. 2013. Cf. Wortmania from the early Paleocene of Montana and an evaluation of the fossil record of the initial diversification of the Taeniodonta (Mammalia). Canadian Journal of Earth Sciences 50:341354.CrossRefGoogle Scholar
Clemens, W. A., and Wilson, G. P. 2009. Early Torrejonian mammalian local faunas from northeastern Montana, U.S.A. Museum of Northern Arizona Bulletin 65:111158.Google Scholar
Collinson, M. E., and Hooker, J. J. 1991. Fossil evidence of interactions between plants and plant-eating mammals. Philosophical Transactions of the Royal Society of London B 333:197208.Google ScholarPubMed
Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. Pp. 229253in Damuth and MacFadden 1990.Google Scholar
Damuth, J., and MacFadden, B. J., eds. 1990. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Davis, B. M. 2007. A revision of “pediomyid” marsupials from the Late Cretaceous of North America. Acta Palaeontologica Polonica 52:217256.Google Scholar
Dayrat, B. 2005. Ancestor-descendant relationships and the reconstruction of the Tree of Life. Paleobiology 31:347353.CrossRefGoogle Scholar
Donohue, S. L., Wilson, G. P., and Breithaupt, B. H. 2013. Latest Cretaceous multituberculates of the Black Butte Station local fauna (Lance Formation, southwestern Wyoming) with implications for compositional differences among mammalian local faunas of the Western Interior. Journal of Vertebrate Paleontology 33(3) (in press).CrossRefGoogle Scholar
Droser, M. L., Bottjer, D. J., and Sheehan, P. M. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167170.2.3.CO;2>CrossRefGoogle Scholar
Eberle, J. J. 2003. Puercan mammalian systematics and biostratigraphy in the Denver Formation, Denver Basin, Colorado. Rocky Mountain Geology 38:143169.CrossRefGoogle Scholar
Erwin, D. H. 1992. A preliminary classification of evolutionary radiations. Historical Biology 6:133147.CrossRefGoogle Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2008. Extinction as the loss of evolutionary history. Proceedings of the National Academy of Sciences USA 105:1152011527.CrossRefGoogle ScholarPubMed
Evans, A. R., Wilson, G. P., Fortelius, M., and Jernvall, J. 2007. High-level similarity of dentitions in carnivorans and rodents. Nature 445:7881.CrossRefGoogle ScholarPubMed
Fara, E. 2000. Diversity of Callovian-Ypresian (Middle Jurassic-Eocene) tetrapod families and selectivity of extinctions at the K/T boundary. Geobios 33:387396.CrossRefGoogle Scholar
Foote, M. 1993a. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1993b. Contributions of individual taxa to overall morphological diversity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and Recent morphological disparity. Science 258:1816.CrossRefGoogle ScholarPubMed
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr . 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:13101314.CrossRefGoogle ScholarPubMed
Fortelius, M. 1990. Problems with using fossil teeth to estimate body sizes of extinct mammals. Pp. 207228in Damuth and MacFadden 1990.Google Scholar
Fox, R. C. 1971. Early Campanian multituberculates (Mammalia: Allotheria) from the upper Milk River Formation, Alberta. Canadian Journal of Earth Sciences 8:916938.CrossRefGoogle Scholar
Fox, R. C. 1987. Palaeontology and the early evolution of marsupials. Pp. 161169inArcher, M., ed. Possums and opossums: studies in evolution. Surrey Beatty and the Royal Zoological Society of New South Wales, Sydney.Google Scholar
Fox, R. C. 1989. The Wounded Knee local fauna and mammalian evolution near the Cretaceous-Tertiary boundary, Saskatchewan, Canada. Palaeontographica, Abteilung A 208:1159.Google Scholar
Fox, R. C., and Naylor, B. G. 2006. Stagodontid marsupials from the Late Cretaceous of Canada and their systematic and functional implications. Acta Palaeontologica Polonica 51:1336.Google Scholar
Fox, R. C., Scott, C. S., and Bryant, H. N. 2007. A new, unusual therian mammal from the Upper Cretaceous of Saskatchewan, Canada. Cretaceous Research 28:821829.CrossRefGoogle Scholar
Friedman, M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society of London B 277:16751683.Google ScholarPubMed
Gibbs, S., Collard, M., and Wood, B. 2000. Soft-tissue characters in higher primate phylogenetics. Proceedings of the National Academy of Sciences USA 97:1113011132.CrossRefGoogle ScholarPubMed
Goldin, T. J., and Melosh, H. J. 2009. Self-shielding of thermal radiation by Chicxulub impact ejecta: firestorm or fizzle? Geology 37:11351138.CrossRefGoogle Scholar
Gordon, C. L. 2003. Functional morphology and diet of Late Cretaceous mammals of North America. Ph.D. dissertation. University of Oklahoma, Norman.Google Scholar
Goswami, A. 2012. A dating success story: genomes and fossils converge on placental mammal origins. EvoDevo 3:18.CrossRefGoogle ScholarPubMed
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.CrossRefGoogle Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. 2002. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361.CrossRefGoogle Scholar
Horovitz, I., Martin, T., Bloch, J., Ladevèze, S., Kurz, C., and Sánchez-Villagra, M. 2009. Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS ONE 4:19.CrossRefGoogle ScholarPubMed
Hotton, C. L. 2002. Palynology of the Cretaceous-Tertiary boundary in central Montana: evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions. Pp. 473501in Hartman et al. 2002.CrossRefGoogle Scholar
Hunter, J. P. 1997. Adaptive radiation of Early Paleocene ungulates. Ph.D. dissertation. State University of New York, Stony Brook.Google Scholar
Hunter, J. P., and Archibald, J. D. 2002. Mammals from the end of the age of dinosaurs in North Dakota and southeastern Montana, with a reappraisal of geographic differentiation among Lancian mammals. Pp. 191216in Hartman et al. 2002.Google Scholar
Hunter, J. P., and Jernvall, J. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences USA 92:1071810722.CrossRefGoogle ScholarPubMed
Hunter, J. P., Hartman, J. H., and Krause, D. W. 1997. Mammals and mollusks across the Cretaceous-Tertiary boundary from Makoshika State Park and vicinity (Williston Basin), Montana: University of Wyoming Contributions to Geology 32:61114.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Mass extinctions and macroevolution. InVrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31(Suppl. to No. 2):192–210.Google Scholar
Jablonski, D., and Raup, D. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the pull of the Recent on the history of marine diversity. Science 300:11331135.CrossRefGoogle ScholarPubMed
Janis, C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. Pp. 255300in Damuth and MacFadden 1990.Google Scholar
Janzen, D. H. 1995. Who survived the Cretaceous? Science 268:785.CrossRefGoogle Scholar
Jernvall, J. 2000. Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences USA 97:26412645.CrossRefGoogle ScholarPubMed
Jernvall, J., Hunter, J. P., and Fortelius, M. 2000. Trends in the evolution of molar crown types in ungulate mammals: evidence from the Northern Hemisphere. Pp. 269281inTeaford, M. F., Smith, M. M., and Ferguson, M. W. J., eds. Development, function, and evolution of teeth. Cambridge University Press, New York.CrossRefGoogle Scholar
Johanson, Z. 1996. Revision of the Late Cretaceous North American marsupial genus Alphadon. Palaeontographica, Abteilung A 242:127184.CrossRefGoogle Scholar
Kangas, A. T., Evans, A. R., Thesleff, I., and Jernvall, J. 2004. Nonindependence of mammalian dental characters. Nature 432:211214.CrossRefGoogle ScholarPubMed
Kay, R. F. 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology 43:195216.CrossRefGoogle ScholarPubMed
Kendall, D. 1977. The diffusion of shape. Advances in Applied Probability 9:428430.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X. 2004. Mammals from the Age of Dinosaurs: origins, evolution, and structure. Columbia University Press, New York.CrossRefGoogle Scholar
Kiessling, W., and Baron-Szabo, R. C. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195223.CrossRefGoogle Scholar
Krause, D. W. 1982. Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8:265281.CrossRefGoogle Scholar
Krug, A. Z., and Jablonski, D. 2012. Long-term origination rates are reset only at mass extinctions. Geology 40:731734.CrossRefGoogle Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W. 2009. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767771.CrossRefGoogle ScholarPubMed
Levine, J. M., and D'Antonio, C. M. 1999. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:1526.CrossRefGoogle Scholar
Levinton, J. S. 1996. Trophic group and the end-Cretaceous extinction: did deposit feeders have it made in the shade? Paleobiology 22:104112.CrossRefGoogle Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. University of Kansas Paleontological Contributions 50:1122.Google Scholar
Lillegraven, J. A. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon 21:261274.CrossRefGoogle Scholar
Lillegraven, J. A., and Eberle, J. J. 1999. Vertebrate faunal changes through Lancian and Puercan time in southern Wyoming. Journal of Paleontology 73:691710.CrossRefGoogle Scholar
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology 30:507521.2.0.CO;2>CrossRefGoogle Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.CrossRefGoogle Scholar
Lofgren, D. L. 1992. Upper premolar configuration of Didelphodon vorax (Mammalia, Marsupialia, Stagodontidae). Journal of Paleontology 66:162164.CrossRefGoogle Scholar
Lofgren, D. L. 1995. The Bug Creek Problem and the Cretaceous-Tertiary transition at McGuire Creek, Montana. University of California Publications in Geological Sciences 140:1185.Google Scholar
Lofgren, D. L., Hotton, C. L., and Runkel, A. C. 1990. Reworking of Cretaceous dinosaurs into Paleocene channel deposits, upper Hell Creek Formation, Montana. Geology 18:874877.2.3.CO;2>CrossRefGoogle Scholar
Lofgren, D. L., Lillegraven, J. A., Clemens, W. A., Gingerich, P. D., and Williamson, T. E. 2004. Paleocene biochronology: the Puercan through Clarkforkian land mammal ages. Pp. 43105inWoodburne, M. O., ed. Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York.CrossRefGoogle Scholar
Lucas, P. W. 2004. Dental functional morphology: how teeth work. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Luckett, W. P. 1993. An ontogenetic assessment of dental homologies in therian mammals. Pp. 182204inSzalay, F. S., Novacek, M. J., and McKenna, M. C., eds. Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials. Springer, New York.CrossRefGoogle Scholar
Luo, Z.-X. 2007. Transformation and diversification in early mammalian evolution. Nature 450:10111019.CrossRefGoogle Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Maas, M. C., and Krause, D. W. 1994. Mammalian turnover and community structure in the Paleocene of North America. Historical Biology 8:91128.CrossRefGoogle Scholar
Maas, M. C., Anthony, M. R. L., Gingerich, P. D., Gunnell, G. F., and Krause, D. W. 1995. Mammalian generic diversity and turnover in the Late Paleocene and Early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 115:181207.CrossRefGoogle Scholar
MacLeod, N., and Keller, G., eds. 1996. Cretaceous-Tertiary mass extinctions: biotic and environmental changes. W. W. Norton, New York.Google Scholar
Markwick, P. J. 1998. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology 24:470497.CrossRefGoogle Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of Western European Tethys. Science 274:13601363.CrossRefGoogle ScholarPubMed
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.CrossRefGoogle Scholar
McGowan, A. J. 2004. Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic. Geology 32:665668.CrossRefGoogle Scholar
McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia. Pp. 2146inLuckett, W. P. and Szalay, F. S., eds. Phylogeny of the primates. Plenum, New York.CrossRefGoogle Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.CrossRefGoogle Scholar
Meredith, R. W., Janečka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., Goodbla, A., Eizirik, E., Simão, T. L., Stadler, T., Rabosky, D. L., Honeycutt, R. L., Flynn, J. J., Ingram, C. M., Steiner, C., Williams, T. L., Robinson, T. J., Burk-Herrick, A., Westerman, M., Ayoub, N. A., Springer, M. S., and Murphy, W. J. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521524.CrossRefGoogle ScholarPubMed
Middleton, M. D., and Dewar, E. W. 2004. New mammals from the early Paleocene Littleton fauna (Denver Formation, Colorado). InLucas, S. G., Zeigler, K. E., and Kondrashov, P. E., eds. Paleogene mammals. New Mexico Museum of Natural History and Science Bulletin 26:5980.Google Scholar
Montellano, M. 1992. Mammalian fauna of the Judith River Formation (Late Cretaceous, Judithian), northcentral Montana. University of California Publications in Geological Sciences 136:1115.Google Scholar
Moore, J. R., Wilson, G. P., Sharma, M., Hallock, H. R., and Braman, D. R.In press. Assessing the relationships of the Hell Creek–Fort Union contact, Cretaceous-Paleogene boundary and impact ejecta horizon at the type section of the Hell Creek Formation, Montana, U.S.A. InWilson, G. P., Clemens, W. A., Horner, J. R., and Hartman, J. H., eds. Through the end of the Cretaceous in the type locality of the Hell Creek Formation in Montana and adjacent areas. Geological Society of America Special Paper.Google Scholar
Murphy, W. J., Larkin, D. M., Everts-van der Wind, A., Bourque, G., Tesler, G., Auvil, L., Beever, J. E., Chowdhary, B. P., Galibert, F., Gatzke, L., Hitte, C., Meyers, S. N., Milan, D., Ostrander, E. A., Pape, G., Parker, H. G., Raudsepp, T., Rogatcheva, M. B., Schook, L. B., Skow, L. C., Welge, M., Womack, J. E., O'Brien, S. J., Pevzner, P. A., and Lewin, H. A. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613617.CrossRefGoogle ScholarPubMed
Naylor, G. J., and Adams, D. C. 2001. Are the fossil data really at odds with the molecular data? Morphological evidence for Cetartiodactyla phylogeny reexamined. Systematic Biology 50:444453.Google ScholarPubMed
Nichols, D. J., and Johnson, K. R. 2008. Plants and the K-T Boundary. Cambridge University Press, New York.CrossRefGoogle Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Novacek, M., and Clemens, W. A. 1977. Aspects of intrageneric variation and evolution of Mesodma (Multituberculata, Mammalia). Journal of Paleontology 51:701717.Google Scholar
Ogg, J. G., and Smith, A. G. 2004. The geomagnetic polarity time scale. Pp. 6386inGradstein, F. M., Ogg, J. G., and Smith, A., eds. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Raup, D. 1986. Biological extinction in earth history. Science 231:15281533.CrossRefGoogle ScholarPubMed
Raup, D. 1991. Extinction: bad genes or bad luck? W. W. Norton, New York.Google ScholarPubMed
Raup, D., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.CrossRefGoogle ScholarPubMed
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K. 2011. Response to the comment by Schwartz, W. H.et al. on “Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for the 40Ar/39Ar geochronology” byRenne, P. R.et al. (2010). Geochimica et Cosmochimica Acta 75:50975100.CrossRefGoogle Scholar
Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S., and Lillegraven, J. A. 2004. Survival in the first hours of the Cenozoic. Geological Society of America Bulletin 116:760768.CrossRefGoogle Scholar
Rohlf, F. J. 1990. Morphometrics. Annual Review of Ecology and Systematics 21:299316.CrossRefGoogle Scholar
Rohlf, F. J. 2010a. tpsDig, Version 2.16. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
Rohlf, F. J. 2010b. tpsUtil, Version 1.46. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.CrossRefGoogle Scholar
Salazar-Ciudad, I., and Jernvall, J. 2002. A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences USA 99:81168120.CrossRefGoogle ScholarPubMed
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:12141218.CrossRefGoogle ScholarPubMed
Sheehan, P. M., and Fastovsky, D. E. 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556560.2.3.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.2.0.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. InRyder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307:477489.Google Scholar
Sheets, H. D. 2003. CoordGen for integrated morphometrics package, Version 6f. Department of Physics, Canisius College, Buffalo, N.Y.Google Scholar
Sheets, H. D. 2007. DisparityBox for integrated morphometrics package, Version 6i. Department of Physics, Canisius College, Buffalo, N.Y.Google Scholar
Sheets, H. D. 2009. Semiland for integrated morphometrics package, Version 6. Department of Physics, Canisius College, Buffalo, N.Y.Google Scholar
Sheets, H. D. 2012. PCAGenMac for integrated morphometrics package, Version 7a. Department of Physics, Canisius College, Buffalo, N.Y.Google Scholar
Simpson, G. G. 1937. The beginning of the Age of Mammals. Biological Reviews 12:147.CrossRefGoogle Scholar
Simpson, G. G. 1952. Periodicity in vertebrate evolution. Journal of Paleontology 26:359370.Google Scholar
Sloan, R. E. 1979. Multituberculata. Pp. 492498inFairbridge, R. W. and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson and Ross, Stroudsburg, Pa.CrossRefGoogle Scholar
Sloan, R. E., and Van Valen, L. 1965. Cretaceous mammals from Montana. Science 148:220227.CrossRefGoogle ScholarPubMed
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., McCain, C., Okie, J. G., Saarinen, J. J., Sibly, R. M., Stephens, P. R., Theodor, J., and Uhen, M. D. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:12161219.CrossRefGoogle ScholarPubMed
Smits, P., and Wilson, G. P. 2011. Estimates and trends in body size of Laurasian Cretaceous mammals. InTrinajstic, K., Bunce, M., Warburton, N., Hadley, C., Baynes, A., and Siversson, M., eds. Thirteenth Conference on Australasian Vertebrate Evolution Paleontology and Systematics. Geological Survey of Western Australia, Record 2011/9:76. Perth.Google Scholar
Solé, R. V., Montoya, J. M., and Erwin, D. H. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London B 357:697707.CrossRefGoogle ScholarPubMed
Storer, J. E. 1991. The mammals of the Gryde Local Fauna, Frenchman Formation (Maastrichtian: Lancian), Saskatchewan. Journal of Vertebrate Paleontology 11:350369.CrossRefGoogle Scholar
Strait, S. G. 1993. Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy 72:391402.CrossRefGoogle Scholar
Strait, S. G. 1997. Tooth use and the physical properties of food. Evolutionary Anthropology 5:199211.3.0.CO;2-8>CrossRefGoogle Scholar
Stucky, R. K. 1990. Evolution of land mammal diversity in North America during the Cenozoic. Pp. 375432inGenoways, H. H., ed. Current mammalogy, Vol. 2. Plenum, New York.Google Scholar
Swisher, C. C. III, Dingus, L., and Butler, R. F. 1993. 40Ar/39Ar dating and magnetostratigraphic correlation of the terrestrial Cretaceous-Paleogene boundary and Puercan Mammal Age, Hell Creek-Tullock formations, eastern Montana. Canadian Journal of Earth Sciences 30:19811986.CrossRefGoogle Scholar
Tedford, R. H. 1970. Principles and practices of mammalian geochronology in North America. Pp. 666703inYochelson, E. L., ed. Proceedings of the North American Paleontological Convention. Allen Press, Lawrence, Kans.Google Scholar
Tseng, Z. J., and Wang, X. 2011. Do convergent ecomorphs evolve through convergent morphological pathways? Cranial shape evolution in fossil hyaenids and borophagine canids (Carnivora, Mammalia). Paleobiology 37:470489.CrossRefGoogle Scholar
Van Valen, L. M. 1971. Adaptive zones and the orders of mammals. Evolution 25:420428.CrossRefGoogle ScholarPubMed
Van Valen, L. M. 1978. The beginning of the Age of Mammals. Evolutionary Theory 4:4580.Google Scholar
Van Valen, L. M., and Sloan, R. E. 1977. Ecology and the extinction of the dinosaurs. Evolutionary Theory 2:3764.Google Scholar
Vilhena, D. A., Harris, E. B., Bergstrom, C. T., Maliska, M. E., Sidor, C. A., Ward, P., Strömberg, C. A. E., and Wilson, G. P. 2012. A molluscan latitudinal selectivity gradient in the end-Cretaceous mass extinction. Geological Society of America Abstracts with Programs 44:185.Google Scholar
Villier, L., and Korn, D. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.CrossRefGoogle ScholarPubMed
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Weil, A. 1998. A new species of Microcosmodon (Mammalia: Multituberculata) from the Paleocene Tullock Formation of Montana, and an argument for the Microcosmodontidae. PaleoBios 18:115.Google Scholar
Weil, A. 1999. Multituberculate phylogeny and mammalian biogeography in the Late Cretaceous and earliest Paleocene Western Interior of North America. Ph.D. dissertation. University of California, Berkeley.Google Scholar
Weil, A., and Clemens, W. A. 1998. Aliens in Montana: phylogenetically and biogeographically diverse lineages contributed to an earliest Cenozoic community. Geological Society of America Abstracts with Programs 30:6970.Google Scholar
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology 31:3555.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous Extinction. Science 313:11121115.CrossRefGoogle ScholarPubMed
Williamson, T. E., Brusatte, S. L., Carr, T. D., Weil, A., and Standhardt, B. R. 2012. The phylogeny and evolution of Cretaceous-Paleogene metatherians: cladistic analysis and description of new early Paleocene specimens from the Nacimiento Formation, New Mexico. Journal of Systematic Palaeontology 10:625651.CrossRefGoogle Scholar
Wilson, G. P. 2004. A quantitative assessment of mammalian change leading up to and across the Cretaceous-Tertiary boundary in northeastern Montana. Ph.D. dissertation. University of California, Berkeley.Google Scholar
Wilson, G. P. 2005. Mammalian faunal dynamics during the last 1.8 million years of the Cretaceous in Garfield County, Montana. Journal of Mammalian Evolution 12:5375.CrossRefGoogle Scholar
Wilson, G. P.In press. Mammalian extinction, survival, and recovery dynamics across the Cretaceous-Paleogene boundary in northeastern Montana. InWilson, G. P., Clemens, W. A., Horner, J. R., and Hartman, J. H., eds. Through the end of the Cretaceous in the type locality of the Hell Creek Formation in Montana and adjacent areas. Geological Society of America Special Papers.Google Scholar
Wilson, G. P., and Riedel, J. A. 2010. New specimen reveals deltatheroidan affinities of the North American Late Cretaceous mammal Nanocuris. Journal of Vertebrate Paleontology 30:872884.CrossRefGoogle Scholar
Wilson, G. P., and Self, C. 2011. Mammalian dental complexity across the Cretaceous-Paleogene boundary with implications for ecological recovery and expansion. Journal of Vertebrate Paleontology 31 (Suppl. to No. 3):215A.Google Scholar
Wilson, G. P., Dechesne, M., and Anderson, I. R. 2010. New latest Cretaceous mammals from northeastern Colorado with biochronologic and biogeographic implications. Journal of Vertebrate Paleontology 30:499520.CrossRefGoogle Scholar
Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., and Jernvall, J. 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457460.CrossRefGoogle ScholarPubMed
Wing, S. L., and Tiffney, B. H. 1987. Interactions of angiosperms and herbivorous tetrapods through time. Pp. 203224inFriis, E. M., Chaloner, W. G., and Crane, P. R., eds. The origins of angiosperms and their biological consequences. Cambridge University Press, New York.Google Scholar
Wing, S. L., Sues, H.-D., Potts, R., DiMichele, W. A., and Behrensmeyer, A. K. 1992. Evolutionary paleoecology. Pp. 113inBehrensmeyer, A. K., Damuth, J., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric morphometrics for biologists: a primer. Elsevier Academic, San Diego.Google Scholar