Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T05:28:33.431Z Has data issue: false hasContentIssue false

Models for fossil concentrations: paleobiologic implications

Published online by Cambridge University Press:  08 April 2016

Susan M. Kidwell*
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637

Abstract

Four basic types of skeletal concentrations are modeled in terms of changes in sedimentation rate alone. The model categorizes fossil concentrations on the relatively objective basis of their bed contacts, and uses this criterion to infer directional shifts in net sedimentation. This radical simplification of accumulation histories, in which hardpart input is held constant, yields a surprisingly powerful model capable of predicting a broad spectrum of taphonomic and paleobiologic phenomena. Type I concentrations grade from less fossiliferous sediments and terminate in omission surfaces; if hardpart supply is held constant, they record a slowdown from positive to zero net sedimentation. Type II concentrations are the same as Type I but terminate in erosion surfaces (slowdown to negative net sedimentation), and Type III and IV concentrations are characterized by basal erosion or omission surfaces, respectively, grade upward into less fossiliferous sediments, and record increases in net sedimentation from negative or zero rates to positive rates. According to the model, samples collected from successive horizons within any of these shell beds will differ in the degree and type of post-mortem bias owing to differing histories of hardpart exposure at the depositional interface. Moreover, because rates of sediment accumulation govern the abundance of hardparts at the depositional interface and thus many of the physical characteristics of the benthic habitat, the dynamics of fossil accumulation have direct consequences for the structure of benthic communities (taphonomic feedback) and for ecologically controlled species morphometry.

The model is highly robust to fluctuations in hardpart input, as judged by its ability to correctly infer modes of formation of concentrations in synthetic stratigraphic sections. In addition, field examples of Type I–IV concentrations show independent evidence of formation during intervals of reduced net sedimentation, and many exhibit trends in taphonomic and paleobiologic features expected from the postulated changes in net sedimentation. The model thus provides a testable working hypothesis for the accumulation of fossil material in a wide range of environments, and should be applicable to concentrations of any taxonomic composition, state of preservation, or geologic age. The power and robustness of this heuristic model in fact argue that fossil-rich and fossil-poor strata provide fundamentally different records of past conditions, and that sedimentation rather than hardpart input is the primary control on the nature of the fossil record.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aigner, T. 1982. Calcareous tempestites: storm-dominated stratification in upper Muschelkalk limestones (Triassic, SW-Germany). Pp. 180198. In: Einsele, G. and Seilacher, A., eds. Cyclic and Event Stratification. Springer-Verlag; Berlin.Google Scholar
Aigner, T., Hagdorn, H., and Mundlos, R. 1978. Biohermal, biostromal and storm-generated coquinas in the Upper Muschelkalk. N. Jb. Geol. Paläontol. Abh. 157:4252.Google Scholar
Aigner, T. and Reineck, H.-E. 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenberg. Marit. 14:183215.Google Scholar
Alexandersson, T. 1972. Micritization of carbonate particles: processes of precipitation and dissolution in modern shallow-marine sediments. Bull. Geol. Inst. Univ. Uppsala N.S. 3(7):201236.Google Scholar
Alexandersson, T. 1978. Destructive diagenesis of carbonate sediments in the eastern Skagerrak, North Sea. Geology. 6:324327.2.0.CO;2>CrossRefGoogle Scholar
Aller, R. C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J. Geol. 90:7995.CrossRefGoogle Scholar
Anderson, T. F., Bender, M. L., and Broecker, W. S. 1973. Surface areas of biogenic carbonates and their relation to fossil ultrastructure and diagenesis. J. Sed. Petrol. 43:471477.Google Scholar
Barrell, J. 1917. Rhythms and the measurement of geologic time. Geol. Soc. Am. Bull. 28:745904.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology. 4:150162.CrossRefGoogle Scholar
Behrensmeyer, A. K. and Hill, A. P., eds. 1980. Fossils in the Making: Vertebrate Taphonomy and Paleoecology. Univ. Chicago Press; Chicago.Google Scholar
Brett, C. E. and Brookfield, M. E. 1984. Morphology, faunas, and genesis of Ordovician hardgrounds from southern Ontario, Canada. Palaeogeogr., Palaeoclim., Palaeoecol. 46:233290.Google Scholar
Brinkmann, R. 1929. Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten über Artbegriff und Stammesentwicklung. Abh. Ges. Wiss. Göttingen, Math.-Phys. Kl., N.F., 13:249 pp.Google Scholar
Cadée, G. C. 1968. Molluscan biocoenoses and thanatocoenoses in the Ria de Arosa, Galicia, Spain. Zool. Verhandl. Rijkmus. Nat. Hist. Leiden. 95:1121.Google Scholar
Cadée, G. C. 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 10:440460.Google Scholar
Cadée, G. C. 1979. Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea. Neth. J. Sea Res. 13:441456.CrossRefGoogle Scholar
Campbell, C. V. 1967. Lamina, laminaset, bed and bedset. Sedimentology. 8:726.Google Scholar
Carter, R. W. G. 1974. Feeding sea birds as a factor in lamellibranch valve sorting patterns. J. Sed. Petrol. 44:689692.Google Scholar
Chave, K. E. 1964. Skeletal durability and preservation. Pp. 377387. In: Imbrie, J. and Newell, N. D., eds. Approaches to Paleoecology. Wiley; New York.Google Scholar
Crisp, D. J. 1976. Settlement responses in marine organisms. Pp. 83124. In: Newell, R. C., ed. Adaptations to Environment: Essays on the Physiology of Marine Animals. Butterworths; London.CrossRefGoogle Scholar
Driscoll, E. G. 1967. Experimental field study of shell abrasion. J. Sed. Petrol. 37:11171123.Google Scholar
Driscoll, E. G. 1970. Selective bivalve shell destruction in marine environments: a field study. J. Sed. Petrol. 40:898905.Google Scholar
Driscoll, E. G. and Weltin, T. P. 1973. Sedimentary parameters as factors in abrasive shell reduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 13:275288.CrossRefGoogle Scholar
Driscoll, E. G., Swanson, R. A., and Sulanowski, J. 1974. Seasonal variations in sedimentary carbonate. Geol. Soc. Am. Abstr. 6:10341036.Google Scholar
Eller, M. G. 1981. The Red Chalk of eastern England: A Cretaceous analogue of Rosso Ammonitico. Pp. 207231. In: Farinacci, A. and Elmi, S., eds. Rosso Ammonitico Symp. Proc. Ed. Technoscienza; Rome.Google Scholar
Fagerstrom, J. A. 1964. Fossil communities in paleoecology: their recognition and significance. Geol. Soc. Am. Bull. 75:11971216.CrossRefGoogle Scholar
Flessa, K. W. and Brown, T. J. 1983. Selective solution of macroinvertebrate calcareous hard parts: a laboratory study. Lethaia. 16:193205.Google Scholar
Force, L. M. 1969. Calcium carbonate size distribution on the West Florida shelf and experimental studies on the microarchitectural control of skeletal breakdown. J. Sed. Petrol. 39:902934.Google Scholar
Frey, R. W., Voorhies, M. R., and Howard, J. D. 1975. Estuaries of the Georgia Coast, U.S.A.: Sedimentology and Biology. VIII. Fossil and recent skeletal remains in Georgia estuaries. Senckenbergiana Marit. 7:257295.Google Scholar
Fürsich, F. T. 1979. Genesis, environments, and ecology of Jurassic hardgrounds. N. Jb. Geol. Paläontol. Abh. 158:163.Google Scholar
Fürsich, F. T. and Kauffman, E. G. 1984. Palaeoecology of marginally marine sedimentary cycles in the Albian Bear River Formation of southwestern Wyoming (USA). Palaeontology. 27:501536.Google Scholar
Futterer, D. K. 1974. Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. J. Sed. Petrol. 44:7984.Google Scholar
Futterer, E. 1978a. Studien uber die Einregelung, Anlagerung und Einbettung biogener Hartteile im Stromungskanal. N. Jb. Geol. Paläontol. Abh. 156:87131.Google Scholar
Futterer, E. 1978b. Hydrodynamic behavior of biogenic particles. N. Jb. Geol. Paläontol. Abh. 157:3742.Google Scholar
Gernant, R. E. 1971. Invertebrate biofacies and paleoenvironments. Pp. 1930. In: Gernant, R. E., Gibson, T. G., and Whitmore, F. C. Jr., eds. Environmental History of Maryland Miocene. Maryland Geol. Survey Guidebook No. 3; Baltimore.Google Scholar
Gerrodette, T. and Flechsig, A. O. 1979. Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunosa. Mar. Biol. 55:103110.CrossRefGoogle Scholar
Golubic, S., Perkins, R. D., and Lukas, K. J. 1975. Boring microorganisms and microborings in carbonate substrates. Pp. 229259. In: Frey, R. W., ed. The Study of Trace Fossils. Springer-Verlag; New York.Google Scholar
Heim, A. 1924. Über submarine Denudation und chemische Sedimente. Geol. Rundsch. 15:147.Google Scholar
Heim, A. 1958. Oceanic sedimentation and submarine discontinuities. Eclogae Geol. Helvet. 51:642649.Google Scholar
Hill, G. W., Roberts, K. A., Kindinger, J. L., and Wiley, G. D. 1982. Geobiologic study of the south Texas outer continental shelf. U.S. Geol. Survey Prof. Pap. 1238:36 pp.Google Scholar
Hollman, R. 1968. Zur Morphologie rezenter Mollusken-Bruchschille. Paläontol. Z. 42:217235.Google Scholar
Jenkyns, H. C. 1971. The genesis of condensed sequences in the Tethyan Jurassic. Lethaia. 4:327352.Google Scholar
Jervey, M. T. 1974. Transportation and dispersal of biogenic material in the nearshore marine environment. Unpub. Ph.D. diss., Louisiana St. Univ., 340 pp.Google Scholar
Johnson, R. G. 1957. Experiments on the burial of shells. J. Geol. 65:527535.Google Scholar
Johnson, R. G. 1960. Models and methods for analysis of the mode of formation of fossil assemblages. Geol. Soc. Am. Bull. 71:10751088.Google Scholar
Jumars, P. A. and Nowell, A. R. M. 1984. Fluid and sediment dynamic effects on marine benthic community structure. Am. Zool. 24:4555.Google Scholar
Kelley, P. H. 1979. Mollusc lineages of the Chesapeake Group (Miocene). Unpub. Ph.D. diss., Harvard Univ., 220 pp.Google Scholar
Kelley, P. H. 1983a. Evolutionary patterns of eight Chesapeake Group molluscs: Evidence for the model of punctuated equilibria. J. Paleontol. 57:581598.Google Scholar
Kelley, P. H. 1983b. The role of within-species differentiation in macroevolution of Chesapeake Group bivalves. Paleobiology. 9:261268.Google Scholar
Kidwell, S. M. 1982a. Stratigraphy, invertebrate taphonomy and depositional history of the Miocene Calvert and Choptank Formations, Atlantic Coastal Plain. Unpub. Ph.D. diss, Yale Univ., 514 pp.Google Scholar
Kidwell, S. M. 1982b. Time scales of fossil accumulation: Patterns from Miocene benthic assemblages. 3d N. Am. Paleontol. Conv., Proc. 1:295300.Google Scholar
Kidwell, S. M. 1984. Outcrop features and origin of basin margin unconformities, Miocene Lower Chesapeake Group, Atlantic Coastal Plain. Am. Assoc. Petrol. Geol. Mem. 37:3758.Google Scholar
Kidwell, S. M. 1985. Palaeobiological and sedimentological implications of fossil concentrations. Nature 318:457460.CrossRefGoogle Scholar
Kidwell, S. M. and Aigner, T. 1985. Sedimentary dynamics of complex shell beds: implications for ecologic and evolutionary patterns. Pp. 382395. In: Bayer, U. and Seilacher, A., eds. Sedimentary and Evolutionary Cycles. Springer Verlag; Berlin.CrossRefGoogle Scholar
Kidwell, S. M. and Jablonski, D. 1983. Taphonomic feedback: Ecological consequences of shell accumulation. Pp. 195248. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Kranz, P. M. 1974. The anastrophic burial of bivalves and its paleoecological significance. J. Geol. 82:237265.CrossRefGoogle Scholar
Lever, J. 1958. Quantitative beach research. I. The “left-right phenomenon”: sorting of lamellibranch valves on sandy beaches. Basteria. 22:2151.Google Scholar
Lever, J., Kessler, A., van Overbeeke, A. P., and Thijssen, R. 1961. Quantitative beach research. II. The “hole effect” a second mode of sorting of lamellibranch valves on sandy beaches. Neth. J. Sea Res. 1:339358.Google Scholar
Lever, J. and Thijssen, R. 1968. Sorting phenomena during the transport of shell valves in sandy beaches studied with the use of artificial valves. Symp. Zool. Soc. London. 22:259271.Google Scholar
Lewy, Z. 1975. Early diagenesis of calcareous skeletons in the Baltic Sea, western Germany. Meyniana. 27:29333.Google Scholar
Lindberg, D. R. and Kellogg, M. G. 1982. Bathymetric anomalies in the Neogene fossil record: The role of diving marine birds. Paleobiology 8:402407.CrossRefGoogle Scholar
Lund, E. J. 1957. Self-silting by the oyster and its significance for sedimentation geology. Univ. Tex. Contrib. Mar. Sci. 4:320327.Google Scholar
McCarthy, B. 1979. Trace fossils from a Permian shorefaceforeshore environment, eastern Australia. J. Paleobiol. 53:345366.Google Scholar
Middleton, G. V. 1967. The orientation of concavo-convex particles deposited from experimental turbidity currents. J. Sed. Petrol. 37:229232.Google Scholar
Moore, H. B. 1972. An estimate of carbonate production by macrobenthos in some tropical soft-bottom communities. Mar. Biol. 17:145148.Google Scholar
Müller, A. H. 1976. Lehrbuch der Paläozoologie, Band I Allgemeine Grundlagen. Fischer; Jena. 423 pp.Google Scholar
Müller, A. H. 1979. Fossilization (Taphonomy). Pp.A2–A78. In: Robison, R. A. and Teichert, C., eds. Treatise on Invertebrate Paleontology, Part A. Allen Press; Lawrence, Kansas.Google Scholar
Nowell, A. R. M. and Jumars, P. A. 1984. Flow environments of aquatic benthos. Ann. Rev. Ecol. Syst. 15:303328.Google Scholar
Peterson, C. H. 1976. Relative abundances of living and dead molluscs in two California lagoons. Lethaia. 9:137148.CrossRefGoogle Scholar
Pfannkuche, O., Theeg, R., and Thiel, H. 1983. Benthos activity, abundance and biomass under an area of low upwelling off Morocco, northwest Africa. “Meteor” Forsch.-Ergebnisse D 36:8596.Google Scholar
Probert, P. K. 1984. Disturbance, sediment stability, and trophic structure of soft-bottom communities. J. Mar. Res. 42:893921.Google Scholar
Rhoads, D. C. 1967. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. J. Geol. 75:461476.Google Scholar
Rhoads, D. C. 1970. Mass properties, stability, and ecology of marine muds related to burrowing activity. Pp. 391406. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool.Google Scholar
Rhoads, D. C. and Stanley, D. J. 1965. Biogenic graded bedding. J. Sed. Petrol. 35:956963.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments (Oertel, I., transl.). Univ. Chicago Press; Chicago. 568 pp.Google Scholar
Sepkoski, J. J. Jr. 1978. Taphonomic factors influencing the lithologic occurrence of fossils in Dresbachian (Upper Cambrian) shaley facies. Geol. Soc. Am. Abstr. 10:490.Google Scholar
Sylvester-Bradley, P. C. 1977. Biostratigraphical tests of evolutionary theory. Pp. 4163. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Taylor, J. D. and Layman, M. 1972. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology. 15:7387.Google Scholar
Thayer, C. W. 1975. Morphological adaptations of benthic invertebrates to soft substrata. J. Mar. Res. 33:177189.Google Scholar
Tipper, J. C. 1983. Rates of sedimentation and stratigraphic completeness. Nature. 302:696698.CrossRefGoogle Scholar
Walker, K. R. and Alberstadt, L. P. 1975. Ecological succession as an aspect of structure in fossil communities. Paleobiology. 1:238257.Google Scholar
Wanless, H. R. 1979. Limestone response to stress: Pressure solution and dolomitization. J. Sed. Petrol. 59:437462.Google Scholar
Warme, J. E. 1975. Borings as trace fossils, and the processes of marine bioerosion. Pp. 181227. In: Frey, R. W., ed. The Study of Trace Fossils. Springer-Verlag; New York.CrossRefGoogle Scholar
Wheeler, H. E. 1964. Baselevel, lithosphere surface, and time-stratigraphy. Geol. Soc. Am. Bull. 75:599610.CrossRefGoogle Scholar
Williamson, P. G. 1981. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.Google Scholar
Williamson, P. G. 1982. Punctuationism and Darwinism reconciled? Nature. 296:611612.Google Scholar