Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-06T05:24:58.901Z Has data issue: false hasContentIssue false

Occupancy, range size, and phylogeny in Eurasian Pliocene to Recent large mammals

Published online by Cambridge University Press:  08 April 2016

Francesco Carotenuto
Affiliation:
Dipartimento di Scienze delta Terra, Università degli studi Federico II, Largo San Marcellino 10, Napoli 80138, Italy. E-mail: f.carotenuto@ymail.com
Carmela Barbera
Affiliation:
Dipartimento di Scienze delta Terra, Università degli studi Federico II, Largo San Marcellino 10, Napoli 80138, Italy. E-mail: carmela.barbera@unina.it
Pasquale Raia
Affiliation:
Dipartimento di Scienze delta Terra, Università degli studi Federico II, Largo San Marcellino 10, Napoli 80138, Italy. E-mail: pasquale.raia@libero.it

Abstract

Temporal patterns in species occupancy and geographic range size are a major topic in evolutionary ecology research. Here we investigate these patterns in Pliocene to Recent large mammal species and genera in Western Eurasia. By using an extensively sampled fossil record including some 700 fossil localities, we found occupancy and range size trajectories over time to be predominantly peaked among both species and genera, meaning that occupancy and range size reached their maxima midway along taxon existence. These metrics are strongly correlated with each other and to body size, after phylogeny is accounted for by using two different phylogenetic topologies for both species and genera. Phylogenetic signal is strong in body size, and weaker but significant in both occupancy and range size mean values among genera, indicating that these variables are heritable. The intensity of phylogenetic signal is much weaker and often not significant at the species level. This suggests that within genera, occupancy and range size are somewhat variable. However, sister taxa inherit geographic position (the center of their geographic distribution). Taken together, the latter two results indicate that sister species occupy similar positions on the earth's surface, and that the expansion of the geographic range during the existence of a given genus is driven by range expansion of one or more of the species it includes, rather than simply being the summation of these species ranges.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberdi, M. T., Ortiz-Jaureguizar, E., and Prado, J. L. 1998. Patterns of body size changes in fossil and living Equini (Perissodactyla). Biological Journal of the Linnean Society 54:349370.Google Scholar
Alroy, J. 1998. Cope's Rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Barraclough, T. G., and Vogler, A. P. 2000. Detecting the geographical pattern of speciation from species-level phylogenies. American Naturalist 155:419434.Google Scholar
Beyer, H. L. 2004. Hawth's analysis tools for ArcGIS. http://www.spatialecology.com/htools.Google Scholar
Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143175.CrossRefGoogle ScholarPubMed
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. 2007. The delayed rise of present-day mammals. Nature 446:507512.Google Scholar
Blackburn, T., and Gaston, K. J. 2003. Macroecology: concepts and consequences. Blackwell Science, Oxford.Google Scholar
Blackburn, T., Jones, K. E., Cassey, P., and Losin, N. 2004. The influence of spatial resolution on macroecological patterns of range size variation: a case study using parrots (Aves: Psittaciformes) of the world. Journal of Biogeography 31:285293.Google Scholar
Blomberg, S. P., Garland, T. and Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 47:717745.Google Scholar
Brashares, J. S. 2003. Ecological, behavioral, and life-history correlates of mammal extinctions in West Africa. Conservation Biology 17:733743.CrossRefGoogle Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Brown, J. H., and Nicoletto, P. F. 1991. Spatial scaling of the species composition: body masses of North American land mammals. American Naturalist 138:14781512.Google Scholar
Butler, M. A., and King, A. A. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist 164:683695.Google Scholar
Cao, Y., Fujiwara, M., Nikaido, M., Okada, N., and Hasegawa, M. 2000. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene 259:149158.Google Scholar
Cardillo, M., and Bromham, L. 2001. Body size and risk of extinction in Australian mammals. Conservation Biology 15:14351440.Google Scholar
Cardillo, M., Huxtable, J. S., and Bromham, L. 2003. Geographic range size, life history and rates of diversification in Australian mammals. Journal of Evolutionary Biology 16:282288.Google Scholar
Cerdeño, E. 1995. Cladistic analysis of the Family Rhinocerotidae (Perissodactyla). American Museum Novitates 3143:125.Google Scholar
Chown, S. L., and Gaston, K. J. 1997. The species-body size distribution: energy, fitness and optimality. Functional Ecology 11:365375.Google Scholar
Clauset, A., and Erwin, D. H. 2008. The evolution and distribution of species body size. Science 321:399401.Google Scholar
Clauset, A., Schwab, D. J., and Redner, S. 2009. How many species have mass M? American Naturalist 173:256263.Google Scholar
Collins, S. L., and Glenn, S. M. 1997. Effects of organismal and distance scaling on analysis of species distribution and abundance. Ecological Applications 7:543551.Google Scholar
Croitor, R. 2006. Taxonomy and systematics of large-sized deer of the genus Praemegaceros Portis, 1920 (Cervidae, Mammalia). In Kahlke, R. D., Maul, L. C., Mazza, P. P. A., eds. Late Neogene and Quaternary biodiversity and evolution, Vol. 1. Regional developments and interregional correlations. Courier Forschungsinstitut Senckenberg 256:91116.Google Scholar
Dayan, T., and Simberloff, D. 2005. Ecological and community-wide character displacement: the next generation. Ecology Letters 8:875894.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Finarelli, J. A., and Flynn, J. J. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology 55:301313.Google Scholar
Foote, M. 2007. Symmetric waxing and waning of marine animal genera. Paleobiology 33:517529.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic marine molluscs. Science 318:11311134.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.Google Scholar
Fortelius, M., Gionis, A., Jernvall, J., and Mannila, H. 2006. Spectral ordering and biochronology of European fossil mammals. Paleobiology 32:206214.CrossRefGoogle Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712726.CrossRefGoogle Scholar
Gardenzi, T., and da Silva, J. 1999. Diversity in relation to body size in mammals: a comparative study. American Naturalist 153:110123.Google Scholar
Garland, T., Bennett, A. F., and Rezende, E. L. 2005. Phylogenetic approaches in comparative physiology. Journal of Experimental Biology 208:30153035.Google Scholar
Gaston, K. J. 1998. Species range size distributions: products of speciation, extinction and transformation. Philosophical Trans actions of the Royal Society of London B 353:219230.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic range (Oxford Series in Ecology and Evolution). Oxford University Press, Oxford.Google Scholar
Gaston, K. J., and Blackburn, T. M. 2000. Pattern and process in macroecology. Blackwell Science, Oxford.Google Scholar
Geisler, J. H., and Uhen, M. D. 2005. Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. Journal of Mammalian Evolution 12:145169.Google Scholar
Geraads, D. 1992. Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla). Zoological Journal of the Linnean Society 104:193207.Google Scholar
Gotelli, N. J., and Simberloff, D. 1987. The distribution and abundance of tallgrass prairie plants: a test of the core-satellite hypothesis. American Naturalist 130:1835.Google Scholar
Grantham, T. A. 1995. Hierarchical approaches to macroevolution: recent work on species selection and the “effect hypothesis.” Annual Review of Ecology and Systematics 26:301322.Google Scholar
Hanski, I. 1982. On patterns of temporal and spatial variation in animal populations. Annales Zoologici Fennici 19:2137.Google Scholar
Harmon, L., Weir, J., Brock, C., Glor, R., and Challenger, W. 2008. Geiger: investigating evolutionary diversification. Bioinformatics 2008 24:129131; doi:10.1093/bioinformatics/btm538 Google Scholar
Fernandez, M. Hernandez, and Vrba, E. S. 2005. A complete A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biological Reviews 80:269302.Google Scholar
Hunt, G., Roy, K., and Jablonski, D. 2005. Species-level heritability reaffirmed: a comment on “On the heritability of geographic range sizes.” American Naturalist 166:129135.Google Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.Google Scholar
Jablonski, D, and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: Organismic vs. species-level explanations. American Naturalist 168:556564.Google Scholar
Janis, C. M. 2008. An evolutionary history of browsing and grazing ungulates. Pp. 2145 in Gordon, I. J. and Prins, H. H. T., eds. The ecology of browsing and grazing. Springer, Berlin.Google Scholar
Jenkins, D. G. 1992. Predicting extinctions of some extant planktic Foraminifera. Marine Micropaleontology 19:239243.Google Scholar
Jernvall, J., and Fortelius, M. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417:538540.Google Scholar
Jernvall, J. 2004. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. American Naturalist 164:614624 Google Scholar
Johnson, C. N. 1998. Species extinction and the relationship between distribution and abundance. Nature 394:272274.Google Scholar
Jones, K. E., Sechrest, W., and Gittleman, J. L. 2005. Age and area revisited: identifying global patterns and implications for conservation. Pp. 141165 in Purvis, A., Gittleman, J. L., and Brooks, T. M., eds. Phylogeny and conservation. Cambridge University Press, Cambridge.Google Scholar
Kembel, S. W., Ackerly, D. D., Blomberg, S. P., Cornwell, W. K., Cowan, P. D., Helmus, M. R., Morlon, H. and Webb, C. O. 2009. picante: R tools for integrating phylogenies and ecology. R package version 1.0-0. http://picante.r-forge.r-project.org Google Scholar
Kozlowski, J., and Gawelczyk, A. T. 2002. Why are species body size distributions usually skewed to the right? Functional Ecology 16:419432.Google Scholar
Kuehn, R., Ludt, C. J., Shroeder, W., and Rottmann, O. 2005. Molecular phylogeny of Megaloceros giganteus-the Giant Deer or just a Giant Red Deer? Zoological Science 22:10311044.Google Scholar
Lacombat, F. 2006. Pleistocene rhinoceros in Mediterranean Europe and in Massif Central (France). Courier Forschungsinstitut Senckenberg 256:5769.Google Scholar
Liow, L. H., and Stenseth, N. C. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.Google Scholar
Lister, A. M., Edwards, C. J., Nock, D. A. W., Bunce, M., van Pijlen, I. A., Bradley, D. G., Thomas, M. G., and Barnes, I. 2005. The phylogenetic position of the ‘giant deer’ Megaloceros giganteus. Nature 438:850–3.Google Scholar
Loder, N., Blackburn, T. M., and Gaston, K. H. 1997. The slippery slope: towards an understanding of the body size frequency distribution. Oikos 8:195201.Google Scholar
Lyons, S. K. 2003. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84:385402.Google Scholar
Mazza, P., and Rustioni, M. 1994. On the phylogeny of Eurasian bears. Palaeontographica, Abteilung A 230:138.Google Scholar
McGeoch, M. A., and Gaston, K. J. 2002. Occupancy frequency distributions: patterns, artefacts and mechanisms. Biological Reviews of the Cambridge Philosophical Society 77:311331.Google Scholar
Meloro, C., Raia, P., and Barbera, C. 2007. Effect of predation on prey abundance and survival in Plio-Pleistocene mammalian communities. Evolutionary Ecology Research 9:505525.Google Scholar
Meloro, C., Raia, P., Piras, P., Barbera, C., and O'Higgins, P. 2008. The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zoological Journal of the Linnean Society 154:832845.Google Scholar
Miller, A. I. 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician radiation. Paleobiology 23:410419.Google Scholar
Nee, S., Read, A. F., Greenwood, J. J. D., and Harvey, P. H. 1991. The relationship between abundance and body size in British birds. Nature 351:312313.CrossRefGoogle Scholar
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877884.Google Scholar
Pfeiffer, T. 1999. Die Stellung von Dama (Cervidae, Mammalia) im System plesiometacarpaler Hirsche des Pleistozans. Courier Forschungsinstitut Senckenberg 211:1218.Google Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.Google Scholar
Prasad, A. B., Allard, M. W., and Green, E. D. 2008. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology Evolution. 25:17951808.Google Scholar
Price, S. A., Bininda-Emonds, O. R. P., and Gittleman, J. L. 2005. A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews 80:445473.Google Scholar
Purvis, A., Orme, C. D. L., and Dolphin, K. 2003. Why are most species small-bodied? A phylogenetic view. Pp. 155173 in Blackburn, T. M. and Gaston, K. J., eds. Macroecology: concepts and consequences. Blackwell Science, Oxford.Google Scholar
Pyron, M. 1999. Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal of Biogeography 26:549558.Google Scholar
Qian, H., and Ricklefs, R. E. 2004. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. Journal of Ecology 92:253265.Google Scholar
Raia, P., Meloro, C., Loy, A., and Barbera, C. 2006. Species occupancy and its course in the past: macroecological patterns in extinct communities. Evolutionary Ecology Research 8:181194.Google Scholar
Raia, P., Carotenuto, F., Meloro, C., Piras, P., Barbera, C., and Kotsakis, T. 2009. More than three million years of community evolution: the temporal and geographical resolution of the Plio-Pleistocene Western Eurasia mammal faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 276:1523.Google Scholar
Raia, P. 2010. Phylogenetic community assembly over time in Eurasian Plio-Pleistocene mammals. Palaios (in press).Google Scholar
Revell, L. J., Harmon, L. J., and Collar, D. C. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57:591601.Google Scholar
Ricklefs, R. E., and Bermingham, E. 2002. The concept of the taxon cycle in biogeography. Global Ecology and Biogeography 11:353361.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2001. Climate change, species range limits and body size in marine bivalves. Ecology Letters 4:366370.Google Scholar
Roy, K. 2002. Body size and invasion success in marine bivalves. Ecology Letters 5:163167.CrossRefGoogle Scholar
Shoshani, J., and Tassy, P. 2005. Advances in proboscidean taxonomy & classification, anatomy & physiology, and ecology & behaviour. Quaternary International 126–128:520.Google Scholar
Slater, G. J., and Van Valkenburgh, B. 2008. Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34:403419.Google Scholar
Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. 2005. Molecular evidence for major placental clades. Pp. 3749 in Rose, K. D. and Archibald, J. D., eds. The rise of placental mammals: origins and relationships of major clades. John Hopkins University Press, Baltimore.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution, 27:126.Google Scholar
Theodor, J. M. 2004. Molecular clock divergence estimates and the fossil record of Cetartiodactyla. Journal of Paleontology 78:3944.Google Scholar
Thomas, M. G., Hagelberg, E., Jones, H. B., Yang, Z., and Lister, A. M. 2000. Molecular and morphological evidence on the phylogeny of the Elephantidae. Proceedings of the Royal Society of London B 267:24932500.Google Scholar
Vrba, E. S., and DeGusta, D. 2004. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philosophical Transaction of the Royal Society of London B 359:285292.Google Scholar
Waddell, P., Okada, N., and Hasegawa, M. 1999. Towards resolving the interordinal relationships of placental mammals. Systematic Biology 48:15.Google Scholar
Waldron, A. 2007. Null models of geographic range size evolution reaffirm its heritability. American Naturalist 170:221231.Google Scholar
Wang, X., Tedford, R. H., Van Valkenburgh, B., and Wayne, R. K. 2004. Phylogeny, classification, and evolutionary ecology of the Canidae. Pp. 820 in Sillero Zubiri, C., Hoffmann, C., and Macdonald, D. W., eds. Canids: foxes, wolves, jackals and dogs. IUCN/SSC Canid Specialist Group, Status Survey and Conservation Action Plan. World Conservation Union, Gland, Switzerland and Cambridge, U.K. Google Scholar
Webb, T. J., and Gaston, K. J. K. 2000. Geographic range size and evolutionary age in birds. Proceedings of the Royal Society of London B 267:18431850.Google Scholar
Webb, T. J., and Gaston, K. J. K., 2003. On the heritability of geographic range sizes. American Naturalist 161:553566.Google Scholar
Webster, A. J., and Purvis, A. 2002. Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proceedings of the Royal Society of London B 269:143149.Google Scholar
Werdelin, L., and Solounias, N. 1991. The Hyaenidae: taxonomy, systematics and evolution. Fossils and Strata 30:1104.Google Scholar
Supplementary material: PDF

Carotenuto et al. supplementary material

Appendix 1

Download Carotenuto et al. supplementary material(PDF)
PDF 98.8 KB
Supplementary material: PDF

Carotenuto et al. supplementary material

Appendix 2

Download Carotenuto et al. supplementary material(PDF)
PDF 119.7 KB
Supplementary material: PDF

Carotenuto et al. supplementary material

Appendix 3

Download Carotenuto et al. supplementary material(PDF)
PDF 41.8 KB
Supplementary material: PDF

Carotenuto et al. supplementary material

Appendix 4

Download Carotenuto et al. supplementary material(PDF)
PDF 1.9 MB