Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T21:55:39.162Z Has data issue: false hasContentIssue false

On the measurement of size-independent morphological variability: an example using successive populations of a Devonian spiriferid brachiopod

Published online by Cambridge University Press:  08 February 2016

Karl W. Flessa
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
Ron G. Bray
Affiliation:
Texaco Production Service Ltd., 1 Knightsbridge Green, London, England SW1 7QJ

Abstract

More than 500 undistorted, unfragmented pedicle valves of Ambocoelia umbonata (Conrad) (Spiriferida, Brachiopoda) were recovered from each of four levels within a Middle Devonian fossil cluster. The fossil cluster, an ellipsoidal shell accumulation measuring one meter in diameter and 2 cm in thickness, was exhumed from an exposure of the Ludlowville Shale (Hamilton Group) of western New York. Size frequency histograms indicate that the brachiopod experienced very high levels of juvenile mortality, due, probably, to the effects of high bottom turbidity. Sedimentological and paleontological evidence indicates that the cluster represents a sequence of in situ benthic associations.

Size-independent variation was estimated by calculating the eigenvalue of the minor axis on a log-transformed plot of pedicle valve lengths and widths. The eigenvalue technique eliminates the effect of allometrically induced shape changes and is applicable to multicharacter analyses of morphological variability.

Size-independent variability among the larger individuals of Ambocoelia decreases in successively younger cluster populations. The decrease is not correlated with any observed or inferred change in substratum, diversity, equitability or turbidity.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. R. 1976. Intraspecific variability in rhynchonellid brachiopods: test of a competition hypothesis. Lethaia. 9:235244.CrossRefGoogle Scholar
Ashton, J. H. and Rowell, A. J. 1975. Environmental stability and species proliferation in Late Cambrian Trilobite faunas: a test of the niche-variation hypothesis. Paleobiology. 1:161174.CrossRefGoogle Scholar
Beerbower, J. R. and Bray, R. G. 1971. Growth, mortality and taphonomy in Mid-Devonian brachiopod (Ambocoelia) populations. Geol. Soc. Am. Abstr. with Programs. 3:501.Google Scholar
Beerbower, J. R., Bray, R. G., Buehler, E. J., and Jordan, F. W. 1969. A “paleomicroecologic” study of Mid-Devonian marine assemblages (Hamilton Group) in western New York. Pp. 4877. Paper C, Guidebook, N. Am. Paleontol. Conv. Field Trip 5.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. 427 pp. Elsevier; New York.Google Scholar
Bowen, Z. P., Rhoads, D. C. and McAlester, A. L. 1974. Marine benthic communities in the Upper Devonian of New York. Lethaia. 7:93120.CrossRefGoogle Scholar
Bray, R. G. 1969. The paleoecology of some Middle Devonian fossil clusters, Erie County, New York. 68 pp. Unpubl. M.Sc. thesis. McMaster University; Hamilton, Ontario.Google Scholar
Bray, R. G. 1971. Ecology and “life history” of Mid-Devonian brachiopod clusters, Erie County, New York. 162 pp. Unpubl. Ph.D. dissertation. McMaster University; Hamilton, Ontario.Google Scholar
Bray, R. G. 1972. The paleoecology of some Ludlowville brachiopod clusters (Middle Devonian), Erie County, New York. 24th Int. Geol. Cong., Section 7:6673.Google Scholar
Bretsky, P. W. and Bretsky, S. S. 1975. Phenetic variation in some Middle Ordovician strophomenid brachiopods. Geol. Soc. Am. Mem. 142:336.Google Scholar
Buehler, E. J. and Tesmer, I. H. 1963. Geology of Erie County, New York. 118 pp. Buffalo Soc. Nat. Sci. Bull. 21, No. 3.Google Scholar
Caldwell, W. G. E. 1967. Ambocoeliid brachiopods from the Middle Devonian rocks of northern Canada. Pp. 601606. In: Oswald, D. H., ed. Int. Symp. on the Devonian System. Vol. 1. Alberta Soc. Petrol. Geol., Calgary, Alberta.Google Scholar
Cooper, G. A. 1930. Stratigraphy of the Hamilton Group of New York. Am. J. Sci. 19:116134, 214–236.CrossRefGoogle Scholar
Dixon, W. J., ed. 1975. BMDP—Biomedical Computer Programs. Univ. Calif. Publ. Autom. Comput.Google Scholar
Ferguson, L. 1962. Distortion of Crurithyris urei (Fleming) from the Visean rocks of Fife, Scotland, by compaction of the containing sediment. J. Paleontol. 36:115119.Google Scholar
Hall, J. 1860. Contributions to palaeontology. N.Y. State Cabinet of Nat. Hist. Annu. Rep. 13:55125.Google Scholar
Jolicoeur, P. 1973. Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: A sampling experiment. J. Am. Stat. Assoc. 68:866871.CrossRefGoogle Scholar
Jolicoeur, P. and Heusner, A. A. 1971. The allometry equation in the analysis of the standard oxygen consumption and body weight of the white rat. Biometrics. 27:841855.CrossRefGoogle ScholarPubMed
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:359370.CrossRefGoogle Scholar
McCammon, H. M. 1970. Variation in Recent brachiopod populations. Uppsala Univ. Geol. Inst. Bull., N.S. 2:4148.Google Scholar
Morrison, D. F. 1967. Multivariate Statistical Methods. 338 pp. McGraw-Hill; New York.Google Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods (Upper Ordovician of Indiana and Ohio). J. Paleontol. 46:386405.Google Scholar
Rickard, L. V. 1975. Correlation of the Silurian and Devonian rocks in New York State. N. Y. State Mus. and Sci. Serv. Map and Chart Series Number 24.Google Scholar
Rudwick, M. J. S. 1962. Notes on the ecology of Brachiopods in New Zealand. Trans. R. Soc. New Zealand, Zool. 1:327335.Google Scholar
Rudwick, M. J. S. 1970. Living and Fossil Brachiopods. 199 pp. Hutchinson; London.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry. 776 pp. Freeman; San Francisco, Cal.Google Scholar
Soulé, M. 1971. The variation problem: the gene-flow variation hypothesis. Taxon. 20:3750.CrossRefGoogle Scholar
Soulé, M. 1972. Phenetics of natural populations. III. Variation in insular populations of a lizard. Am. Nat. 106:429446.CrossRefGoogle Scholar
Soulé, M., Yang, S. Y., Weiler, G. W., and Gorman, G. C. 1973. Island Lizards: the geneticphenetic variation correlation. Nature. 242:191193.CrossRefGoogle ScholarPubMed
Tatsuoka, M. M. 1971. Multivariate Analysis: Techniques for Educational and Psychological Research. 310 pp. J. Wiley; New York.Google Scholar
Thayer, C. W. 1972. Marine paleoecology of the Upper Devonian Genesee Group of New York. 226 pp. Unpubl. Ph.D. dissertation. Yale University; New Haven, Conn.Google Scholar
Thayer, C. W. 1974. Marine paleoecology in the Upper Devonian of New York. Lethaia. 7:121155.CrossRefGoogle Scholar
Yablokov, A. V. 1974. Variability of Mammals. 350 pp. Nat. Tech. Inf. Serv.; Springfield, Va.TT-58007.Google Scholar
Ziegler, A. M., Boucot, A. J., and Sheldon, R. P. 1966. Silurian pentameroid brachiopods preserved in position of growth. J. Paleontol. 40:10321036.Google Scholar