Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T18:35:56.435Z Has data issue: false hasContentIssue false

Paleoecology of the K-Pg mass extinction survivor Guembelitria (Cushman): isotopic evidence from pristine foraminifera from Brazos River, Texas (Maastrichtian)

Published online by Cambridge University Press:  08 April 2016

Sarit Ashckenazi-Polivoda
Affiliation:
Dead Sea and Arava Science Center, Neve Zohar, Dead Sea Mobile Post 86910, Israel. E-mail: ashcenaz@post.bgu.ac.il
Carmi Rak
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel. E-mail: sigalabr@bgu.ac.il
Ahuva Almogi-Labin
Affiliation:
Geological Survey of Israel, 30 Malchei Israel Street, Jerusalem, 95501 Israel. E-mail: almogi@gsi.gov.il
Berner Zsolt
Affiliation:
Institute for Mineralogy and Geochemistry, University of Karlsruhe, 76128 Karlsruhe, Germany. E-mail: zsolt-attila.berner@kit.edu
Ofer Ovadia
Affiliation:
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel. E-mail: oferovad@bgu.ac.il
Sigal Abramovich*
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel. E-mail: sigalabr@bgu.ac.il
*
Corresponding author.

Abstract

The late Maastrichtian sediments of the Mullinax-1 and Mullinax-3 boreholes from Brazos River, Texas, offer pristine material. These cores are prime candidates for providing an extraordinary window into the ecology of Guembelitria, a key genus in the K/Pg mass extinction event, as well as information on the habitats of other neritic species. Stable oxygen and carbon isotope analyses were performed on six planktic species (Guembelitria cretacea, Globigerinelloides asper, Heterohelix globulosa, Paraspiroplecta navarroensis, Pseudoguembelina costulata, Rugoglobigerina rugosa) and three benthic genera (Gavelinella, Cibicides, and Lenticulina). Our records support the contention that Guembelitria was fully planktic, as indicated by its δ18O values, which overlap the other planktic species, despite its possible origin from a tychopelagic benthic ancestor. However, Guembelitria is distinctly ranked very low in δ13C values, which overlap the benthic records. The anomalously low δ13C values of Guembelitria may represent an isotopic disequilibrium due to fast shell growth, like in its modern analogue Gallitellia vivans. Another explanation may be that these values are attributable to a neustonic life mode in the uppermost part of the oceans, where photosynthesis is inhibited by high UV and the near absence of nutrients. Because these waters are not photosynthetically depleted, calcification using carbon directly from these waters should yield δ13C values consistent with those found in Guembelitria. The ecological strategy that Guembelitria species used to deal with the nutrient-poor surface-water environments was an opportunistic blooming during stressful times of Maastrichtian global warming events and later during the K-Pg catastrophe.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abramovich, S., and Keller, G. 2003. Planktonic foraminiferal response to the latest Maastrichtian abrupt warm event: a case study from South Atlantic DSDP Site 525A. Marine Micropaleontology 48:225249.CrossRefGoogle Scholar
Abramovich, S., Almogi-Labin, A., and Benjamini, C. 1998. Decline of Maastrichtian pelagic ecosystem based on planktic foraminiferal assemblage changes: implications for the terminal Cretaceous faunal crisis. Geology 26:6366.Google Scholar
Abramovich, S., Keller, G., Stuben, D., and Berner, Z. 2003. Characterization of late Campanian and Maastrichtian planktic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 202:129.Google Scholar
Abramovich, S., Yovel-Corem, S., Almogi-Labin, A., and Benjamini, C. 2010. Global climate change and planktic foraminiferal response in the Maastrichtian. Paleoceanography 25:PA2201.Google Scholar
Abramovich, S., Keller, G., Berner, Z., Cymbalista, M., and Rak, C. 2011. Maastrichtian planktic foraminiferal biostratigraphy and paleoenvironment of Brazos River, Falls County, Texas, U.S.A. SEPM Special Publication 100:123156.Google Scholar
Almogi-Labin, A., Bein, A., and Sass, E. 1993. Late Cretaceous upwelling system along the southern Tethys margin (Israel): interrelationship between productivity bottom water environments and organic matter preservation. Paleoceanography 8:671690.Google Scholar
Arenillas, I., Arz, J. A., Molina, E., and Dupuis, C. 2000. The Cretaceous/Paleogene (K/P) boundary at Aïn Settara, Tunisia: sudden catastrophic mass extinction in planktic foraminifera. Journal of Foraminiferal Research 30:202218.Google Scholar
Arz, J. A., Arenillas, I., and Náñez, C. 2010. Morphostatistical analysis of Maastrichtian populations of Guembelitria from El Kef, Tunisia. Journal of Foraminiferal Research 40:148164.Google Scholar
Ashckenazi-Polivoda, S., Abramovich, S., Almogi-Labin, A., Schneider-Mor, A., Feinstein, S., Puttmann, W., and Berner, Z. 2011. Paleoenvironments of the latest Cretaceous oil shale sequence, Southern Tethys, Israel, as an integral part of the prevailing upwelling system. Palaeogeography, Palaeoclimatology, Palaeoecology 305:93108.Google Scholar
Barrera, E., and Keller, G. 1990. Stable isotope evidence for gradual environmental changes and species survivorship across the Cretaceous/Tertiary boundary. Paleoceanography 5:867890.Google Scholar
Boersma, A., and Shackleton, N. J. 1981. Oxygen and carbon isotope variations and planktonic foraminifera depth habitats, Late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. In J. Theide et al., eds. Initial Reports of the Deep Sea Drilling Project 62:13526. U.S. Government Printing Office, Washington, D.C.Google Scholar
Boersma, A., Shackleton, N. J., Hall, M. A., and Given, Q. 1979. Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleocene paleotemperatures and carbon isotope variations in the Atlantic Ocean. In B. E. Tucholke et al., eds. Initial Reports of the Deep Sea Drilling Project 43:695717. U.S. Government Printing Office, Washington, D.C.Google Scholar
Bornemann, A., and Norris, R. D. 2007. Size-related stable isotope changes in Late Cretaceous planktic foraminifera: implications for paleoecology and photosymbiosis. Marine Micropaleontology 65:3242.Google Scholar
Bourgeois, J., Hansen, T. A., Wiberg, P. L., and Kauffman, E. G. 1988. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science 241:567570.Google Scholar
Coccioni, R., and Luciani, V. 2006. Guembelitria irregularis bloom at the K-T boundary: morphological abnormalities induced in planktonic foraminifera by impact-related extreme environmental stress? Pp. 179196inCockell, C., Koeberl, C., and Gilmour, I., eds. Biological processes associated with impact events (Impact Studies Series). Springer, Berlin.Google Scholar
Culver, S. J. 2003. Benthic foraminifera across the Cretaceous-Tertiary (K-T) boundary: a review. Marine Micropaleontology 47:177226.Google Scholar
D'Haenens, S., Bornemann, A., Roose, K., Claeys, P., and Speijer, R. P. 2012. Stable isotope paleoecology (δ13C and δ18O) of Early Eocene Zeauvigerina aegyptiaca from the North Atlantic (DSDP site 401). Austrian Journal of Earth Sciences 105:179188.Google Scholar
D'Hondt, S., and Arthur, M. A. 1995. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography 10:123135.Google Scholar
D'Hondt, S., and Keller, G. 1991. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous-Tertiary boundary. Marine Micropaleontology 17:77118.Google Scholar
D'Hondt, S., and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktic foraminifera. Paleoceanography 8:527547.Google Scholar
D'Hondt, S., and Zachos, J. C. 1998. Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology 24:512523.Google Scholar
Darling, K. F., Thomas, E., Kasemann, S. A., Seears, H. A., Smart, C. W., and Wade, C. M. 2009. Surviving mass extinction by bridging the benthic/planktic divide. Proceedings of the National Academy of Sciences USA 106:12,62912,633.Google Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotopic evidence for depth stratification of Tertiary and Cretaceous planktic foraminifera. Marine Micropaleontology 3:175196.Google Scholar
Friedrich, O., Herrle, J. O., and Hemleben, C. 2005. Climatic changes in the Late Campanian-Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research 35:228247.Google Scholar
Friedrich, O., Schmiedl, G., and Erlenkeuser, H. 2006. Stable isotope composition of Late Cretaceous benthic foraminifera from the southern South Atlantic: biological and environmental effects. Marine Micropaleontology 58:135157.Google Scholar
Gale, A. S. 2006. The Cretaceous-Palaeogene boundary on the Brazos River, Falls County, Texas: is there evidence for impact-induced tsunami sedimentation? Proceedings of the Geologists' Association 117:173185.CrossRefGoogle Scholar
Gartner, S., and Jiang, M. J. 1985. Cretaceous-Tertiary boundary in east-central Texas. AAPG Bulletin 69:14211422.Google Scholar
Gradstein, F. M., Ogg, J. G., and van Kranendonk, M. 2008. On the geologic time scale 2008. Newsletters on Stratigraphy 43:513.Google Scholar
HansenT. A., B. T. A., B.Upshaw, I, Kauffman, E. G., and Gose, W. 1993. Patterns of molluscan extinction and recovery across the Cretaceous-Tertiary boundary in east Texas: report on new outcrops. Cretaceous Research 14:685706.Google Scholar
Heymann, D., Yancey, T. E., Wolbach, W. S., Thiemens, M. H., Johnson, E. A., Roach, D., and Moecker, S. 1998. Geochemical markers of the Cretaceous-Tertiary boundary event at Brazos River, Texas, USA. Geochimica et Cosmochimica Acta 62:173181.Google Scholar
Houston, R. M., and Huber, B. T. 1998. Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera. Marine Micropaleontology 34:2946.Google Scholar
Houston, R. M., Huber, B. T., and Spero, H. J. 1999. Size-related isotopic trends in some Maastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis. Marine Micropaleontology 36:169188.CrossRefGoogle Scholar
Huber, B. T., Olsson, R. K., and Pearson, P. N. 2006. Taxonomy of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Zeauvigerina, Tenuitella, and Cassigerinella) and problematica (Dipsidripella and Tenuitella?). InPearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T., and Berggren, W. A., eds. Atlas of Eocene planktonic foraminifera. Cushman Foundation for Foraminiferal Research Special Publication 41:461508.Google Scholar
Huber, B. T., MacLeod, K. G., and Tur, N.A. 2008. Chronostratigraphic framework for upper Campanian-Maastrichtian sediments on the Blake Nose (subtropical North Atlantic). Journal of Foraminiferal Research 38:162182.Google Scholar
Jiang, M. J., and Gartner, S. 1986. Calcareous nannofossil succession across the Cretaceous Tertiary boundary in east-central Texas. Micropaleontology 32:232255.Google Scholar
Katz, M. E., Cramer, B. S., Franzese, A., Honisch, B., Miller, K. G., Rosenthal, Y., and Wright, J. D. 2010. Traditional and emerging geochemical proxies in foraminifera. Journal of Foraminiferal Research 40:165192.Google Scholar
Keller, G. 1989. Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktonic foraminifera from Brazos River, Texas. Paleoceanography 4:287332.Google Scholar
Keller, G. 2003. Biotic effects of impacts and volcanism. Earth and Planetary Science Letters 215:249264.Google Scholar
Keller, G., and Pardo, A. 2004. Disaster opportunists Guembelitrinidae: index for environmental catastrophes. Marine Micropaleontology 53:83116.CrossRefGoogle Scholar
Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A., and Stueben, D. 2007. Chicxulub impact predates K-T boundary: new evidence from Brazos, Texas. Earth and Planetary Science Letters 255:339356.Google Scholar
Keller, G., Adatte, T., Baum, G., and Berner, Z. 2008. Reply to Schulte et al. Comment on the paper “Chicxulub impact predates K-T boundary: new evidence from Brazos, Texas.” Earth and Planetary Science Letters 269:620628.Google Scholar
Keller, G., Abramovich, S., Berner, Z., and Adatte, T. 2009. Biotic effects of the Chicxulub impact, K-T catastrophe and sea level change in Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 271:5268.CrossRefGoogle Scholar
Keller, G., Abramovich, S., Berner, Z., and Adatte, T. 2011. Biostratigraphy, age of Chicxulub impact, and depositional environment of the Brazos River KTB sequences. SEPM Special Publication 100:81122.Google Scholar
Kimoto, K., Ishimura, T., Tsunogai, U., Itaki, T., and Ujiié, Y. 2009. The living triserial planktic foraminifer Gallitellia vivans (Cushman): distribution, stable isotopes, and paleoecological implications. Marine Micropaleontology 71:7179.Google Scholar
Koutsoukos, E. A. M. 1994. Early stratigraphic record and phylogeny of the planktonic genus Guembelitria Cushman, 1933. Journal of Foraminiferal Research 24:288295.Google Scholar
Kroon, D., and Nederbragt, A. J. 1990. Ecology and paleoecology of triserial planktic foraminifera. Marine Micropaleontology 16:2538.Google Scholar
Li, L., and Keller, G. 1998. Diversification and extinction in Campanian-Maastrichtian planktic foraminifera of northwestern Tunisia. Eclogae Geolgicae Helvetiae 91:75102.Google Scholar
Li, L., and Keller, G. 1999. Variability in Late Cretaceous climate and deep waters: evidence from stable isotopes. Marine Micropaleontology 161:171190.Google Scholar
Liu, C., and Olsson, R. K. 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research 22:328346.Google Scholar
Luciani, V., Cobianchi, M., and Lupi, C. 2006. Regional record of a global oceanic anoxic event: OAE1a on the Apulia Platform margin, Gargano Promontory, southern Italy. Cretaceous Research 27:754772.Google Scholar
MacLeod, N. 1993. The Maastrichtian-Danian radiation of triserial and biserial planktic foraminifera: testing phylogenetic and adaptational hypotheses in the (micro)fossil record. Marine Micropaleontology 21:47100.Google Scholar
McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K. 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61:611622.Google Scholar
McGowran, B., and Beecroft, A. 1985. Guembelitria in the Early Tertiary of southern Australia and its palaeoceanographic significance. South Australia Department of Mines and Energy Special Publication 5:247261.Google Scholar
Molina, E., Arenillas, I., and Arz, J. A. 1998. Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bulletin de la Société Géologique de France 169:351363.Google Scholar
Nederbragt, A. J. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37:329372.CrossRefGoogle Scholar
Olsson, R. K. 1970. Planktonic foraminifera from base of Tertiary, Millers Ferry, Alabama. Journal of Paleontology 44:598604.Google Scholar
Olsson, R. K., Berggren, W. A., Hemleben, C., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85:1252.Google Scholar
Oppo, D. W., and Fairbanks, R. G. 1989. Carbon isotope composition of tropical surface water during the past 22,000 years. Paleoceanography 4:333351.Google Scholar
Pardo, A., and Keller, G. 2008. Biotic effects of environmental catastrophes at the end of the Cretaceous and early Tertiary: Guembelitria and Heterohelix blooms. Cretaceous Research 29:10581073.Google Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413:481487.Google Scholar
Schulte, P., Speijer, R., Mai, H., and Kontny, A. 2006. The Cretaceous-Paleogene (K-P) boundary at Brazos, Texas: sequence stratigraphy, depositional events and the Chicxulub impact. Sedimentary Geology 184:77109.Google Scholar
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty.” Geochemistry, Geophysics, Geosystems, Vol. 7, Q12P19, doi: 10.1029/2006GC001291.Google Scholar
Smart, C. W., and Thomas, E. 2006. The enigma of early Miocene biserial planktic foraminifera. Geology 34:10411044Google Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. InSilver, L.T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the earth. Geological Society of America Special Paper 190:329352.Google Scholar
Smit, J., Roep, T. B., Alvarez, W., Montanari, A., Claeys, P., Grajalesnishimura, J. M., and Bermudez, J. 1996. Coarse-grained, clastic sandstone complex at the K/T boundary around the Gulf of Mexico: deposition by tsunami waves induced by the Chicxulub impact? InRyder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary Event and other catastrophes in earth history. Geological Society of America Special Paper 307:151182Google Scholar
Smith, C. C., and Pessagno, E. A. J. 1973. Planktonic foraminifera and stratigraphy of the Corsicana Formation (Maestrichtian), north-central Texas. Cushman Foundation for Foraminiferal Research Special Publication 12:168.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable-isotope variability in the planktic foraminifera Globigerinoides sacculifer—results from laboratory experiments. Marine Micropaleontology 22:221234.Google Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope “vital effect” black box. 2. Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639655.Google Scholar
Ujiié, Y., Kimoto, K., and Pawlowski, J. 2008. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Marine Micropaleontology 69:334340.Google Scholar
Yancey, T. E. 1996. Stratigraphy and depositional environments of the Cretaceous-Tertiary boundary complex and basal section, Brazos River, Texas. Gulf Coast Association of Geological Societies Transactions 46:433442.Google Scholar