Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T15:06:38.445Z Has data issue: false hasContentIssue false

Patterns of convergence in general shell form among Paleozoic gastropods

Published online by Cambridge University Press:  08 April 2016

Peter J. Wagner
Affiliation:
Department of Geology, Field Museum of Natural History, 1400 South Lakeshore Drive, Chicago, Illinois 60605. E-mail: pwagner@fmnh.org
Douglas H. Erwin
Affiliation:
Department of Paleobiology, MRC-121, National Museum of Natural History, Post Office Box 37012, Washington, D.C. 20013-7012 Santa Fe Institute, Santa Fe, New Mexico 87501. E-mail: Erwind@si.edu

Abstract

Recent phylogenetic studies of Paleozoic gastropods show the classification provided by the Treatise on Invertebrate Paleontology to include numerous highly polyphyletic taxa. Here we test whether this classification reflects limits on the range of possible designs, general architectural constraints, or common functional solutions for Paleozoic gastropods. Our test evaluates whether superfamilial/subordinal level archetypes as defined by the Treatise evolved more frequently than expected among 626 Late Cambrian–Middle Devonian species. Using a previously established phylogeny and five general shell features (spire angle, exhalent current position, base angle, umbilical width, and apertural inclination) we show that there are fewer gastropod morphotypes than expected given the frequency of change in these features. This is true even after accounting for architectural constraints implied by the data. Moreover, the most common morphotypes include significantly more species and evolved significantly more times than expected. These results imply a set of architectural attractors for lower–middle Paleozoic gastropods, consistent with ecomorphological theory that particular morphotypes are best suited for particular lifestyles. Thus, the Treatise classifications likely reflect these ecomorphological patterns within subclades rather than phylogenetic patterns.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Bandel, K. 1988. Repräsentieren die Euomphaloidea eine natürliche Einheit der Gastropoden? Mitteilungen Geologie-Paläontologie Institut der Universität Hamburg 67:133.Google Scholar
Bandel, K. 2002. Reevaluation and classification of Carboniferous and Permian Gastropoda belonging to the Caenogastropoda and their relation. Mitteilungen Geologie-Paläontologie Institut der Universität Hamburg 86:81188.Google Scholar
Batten, R. L. 1984. The calcitic wall in the Paleozoic families Euomphalidae and Platyceratidae (Archaeogastropoda). Journal of Paleontology 58:11861192.Google Scholar
Cain, A. J. 1977. Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Proceedings of the Royal Society of London B 277:377428.Google ScholarPubMed
Carlson, S. J. 1991. A phylogenetic perspective on articulate brachiopod diversity and the Permo-Triassic extinctions. Pp. 119142 in Dudley, E. C., ed. The unity of evolutionary biology, Vol. 1. Dioscorides Press, Portland, Ore.Google Scholar
Chaffee, C., and Lindberg, D. R. 1986. Larval biology of Early Cambrian molluscs: the implications of small body size. Bulletin of Marine Science 39:556–549.Google Scholar
Cheetham, A. H. 1987. Tempo of evolution in a Neogene bryozoan: are trends in single morphologic characters misleading? Paleobiology 13:286296.CrossRefGoogle Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Collin, R., and Cipriani, R. 2003. Dollo's law and the re-evolution of shell coiling. Proceedings of the Royal Society of London B 270:25512555.CrossRefGoogle ScholarPubMed
Cowen, R. 1981. Crinoid arms and banana plantations: an economic harvesting analogy. Paleobiology 7:332343.CrossRefGoogle Scholar
Edwards, A. W. F., and Cavalli-Sforza, L. L. 1964. Reconstruction of evolutionary trees. Pp. 6776 in Heywood, J. H. and McNeil, J., eds. Phenetic and phylogenetic classification. Systematics Association, London.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Fox, D. L., Fisher, D. C., and Leighton, L. R. 1999. Reconstructing phylogeny with and without temporal data. Science 284:18161819.CrossRefGoogle ScholarPubMed
Golikov, A. N., and Starobogatov, Y. I. 1975. Systematics of pros-obranch gastropods. Malacologia 15:185232.Google Scholar
Gubanov, A. P., Peel, J. S., and Pianovskaya, I. A. 1995. Soft-sediment adaptations in a Silurian gastropod from Central Asia. Palaeontology 38:831842.Google Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Nielsen, R. 1999. Effects of nonindependent substitution on phylogenetic accuracy. Systematic Biology 48:317328.CrossRefGoogle ScholarPubMed
Hughes, R. N. 1986. A functional biology of marine gastropods. Johns Hopkins University Press, Baltimore.Google Scholar
Knight, J. B. 1948. Further new Cambrian bellerophont gastropods. Smithsonian Miscellaneous Collections 111:16.Google Scholar
Knight, J. B., and Yochelson, E. L. 1960. Monoplacophora. Pp. I77I84 in Moore, et al. 1960.Google Scholar
Knight, J. B., Batten, R. L., and Yochelson, E. L. 1954. Mollusca: Gastropoda. Bulletin of the Museum of Comparative Zoology 112:173179.Google Scholar
Knight, J. B., Cox, L. R., Batten, R. L., and Yochelson, E. L. 1960. Systematic descriptions. Pp. I169I324 in Moore, et al. 1960.Google Scholar
Kool, S. P. 1993. Phylogenetic analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia 35:155259.Google Scholar
Lindberg, D. R., and Ponder, W. F. 2001. The influence of classification of the evolutionary interpretation of structure—a re-evaluation of the evolution of the pallial cavity of gastropod molluscs. Organisms, Diversity and Evolution 1:273299.CrossRefGoogle Scholar
Linsley, R. M. 1977. Some laws of gastropod shell form. Paleobiology 3:196206.CrossRefGoogle Scholar
Linsley, R. M. 1978. Locomotion rates and shell form in the Gastropoda. Malacologia 17:193206.Google Scholar
Linsley, R. M., and Kier, W. M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia 25:241254.Google Scholar
Linsley, R. M., Yochelson, E. L., and Rohr, D. M. 1978. A reinterpretation of the mode of life of some Paleozoic frilled gastropods. Lethaia 11:105112.CrossRefGoogle Scholar
MacClintock, C. 1968. Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Museum of Natural History Bulletin 22:1140.Google Scholar
Maddison, W. P. 1990. A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution 44:539557.CrossRefGoogle ScholarPubMed
McLean, J. H. 1984. A case for derivation of the Fissurellidae from the Bellerophontacea. Malacologia 25:320.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
Moore, R. C., et al. 1960. Mollusca 1. Part I of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Morris, N. J. 1990. Early radiation of the Mollusca. Pp. 7390 in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Morris, N. J., and Cleevely, R. J. 1981. Phanerotinus cristatus (Phillips) and the nature of euomphalacean gastropods, Molluscans. Bulletin of the British Museum of Natural History (Geology) 35:195212.Google Scholar
Morris, P. J. 1991. Functional morphology and phylogeny: an assessment of monophyly in the Kingdom Animalia and Paleozoic nearly-planispiral snail-like mollusks. Ph.D. dissertation. Harvard University, Cambridge.Google Scholar
Morton, J. E., and Yonge, C. M. 1964. Classification and structure of the Mollusca. Pp. 158 in Wilbur, K. M. and Yonge, C. M., eds. Physiology of the Mollusca. Academic Press, New York.Google Scholar
Nützel, A., and Bandel, K. 2000. Goniasmidae and Orthonemidae: two new families of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda). Neues Jahrbuch für Geologie und Paläontologie Mitthandelung 2000:557569.CrossRefGoogle Scholar
Nützel, A., and Frýda, J. 2003. Paleozoic plankton revolution: evidence from early gastropod ontogeny. Geology 31:829831.CrossRefGoogle Scholar
Nützel, A., and Mapes, R. H. 2001. Larval and juvenile gastropods from a Carboniferous black shale: palaeoecology and implications for the evolution of the Gastropoda. Lethaia 34:143162.CrossRefGoogle Scholar
Nützel, A., Erwin, D. H., and Mapes, R. H. 2000. Identity and phylogeny of the Late Paleozoic Subulitoidea (Gastropoda). Journal of Paleontology 74:575598.2.0.CO;2>CrossRefGoogle Scholar
Palmer, A. R. 1980. Locomotion rates and shell form in the Gastropoda: a re-evaluation. Malacologia 19:289296.Google Scholar
Papadopoulos, L. N., Todd, J. A., and Michel, E. 2004. Adulthood and phylogenetic analysis in gastropods: character recognition and coding in shells of Lavigeria (Cerithioidea, Thiaridae) from Lake Tanganyika. Zoological Journal of the Linnean Society 140:223240.CrossRefGoogle Scholar
Peel, J. S. 2001. Musculature and asymmetry in a Carboniferous pseudo-bellerophontoidean gastropod (Mollusca). Palaeontology 44:157166.CrossRefGoogle Scholar
Peel, J. S., and Horný, R. J. 1999. Muscle scars and systematic position of the Lower Palaeozoic limpets Archinacella and Barrandicella gen. n. (Mollusca). Journal of the Czech Geological Survey 44:97115.Google Scholar
Ponder, W. F., and Lindberg, D. R. 1996. Gastropod phylogeny—challenges for the 90s. Pp. 135154 in Taylor, J., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Ponder, W. F., and Lindberg, D. R. 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society 119:83265.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology 1:6370.CrossRefGoogle Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229246.CrossRefGoogle Scholar
Simpson, C. 2004. Implications of a new hierarchical branching model for levels of selection and the law of constant extinction. Geological Society of America Abstracts with Programs 36:19.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed. W. H. Freeman, New York.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology 46:165212.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.CrossRefGoogle ScholarPubMed
Thiele, J. 1929. Handbuch der Systematischen Weichtierkunde, Vol. 1. Gustav Fischer, Jenna.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and escalation—an ecological history of life. Princeton University Press, Princeton, N.J. CrossRefGoogle Scholar
Vermeij, G. J., and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology 26:1946.2.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.CrossRefGoogle ScholarPubMed
Wagner, P. J. 1998. A likelihood approach for estimating phylogenetic relationships among fossil taxa. Paleobiology 24:430449.CrossRefGoogle Scholar
Wagner, P. J. 1999a. Phylogenetics of Ordovician–Silurian Lophospiridae (Gastropoda: Murchisoniina): the importance of stratigraphic data. American Malacological Bulletin 15:131.Google Scholar
Wagner, P. J. 1999b. Phylogenetics of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88:1132.Google Scholar
Wagner, P. J. 2000a. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology 49:6586.CrossRefGoogle ScholarPubMed
Wagner, P. J. 2000b. Exhaustion of cladistic character states among fossil taxa. Evolution 54:365386.Google ScholarPubMed
Wagner, P. J. 2001a. Rate heterogeneity in shell character evolution among lophospiroid gastropods. Paleobiology 27:290310.2.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J. 2001b. Gastropod phylogenetics: progress, problems and implications. Journal of Paleontology 75:11281140.2.0.CO;2>CrossRefGoogle Scholar
Wahlman, G. P. 1992. Middle and Upper Ordovician symmetrical univalved molluscs (Monoplacophora and Bellerophontina) of the Cincinnati Arch region. U.S. Geological Survey Professional Paper 1066-O:O1O213.CrossRefGoogle Scholar
Wenz, W. 1938. Gastropoda. Bonntraeger, Berlin.Google Scholar
Wingstrand, K. G. 1985. On the anatomy and relationships of Recent Monoplacophora. Galathea Report 16:194.Google Scholar
Yochelson, E. L. 1971. A new Late Devonian gastropod and its bearing on problems of open coiling and septation. Smithsonian Contributions to Paleobiology 3:231241.Google Scholar
Yochelson, E. L. 1984. Historic and current considerations for revision of Paleozoic gastropod classification. Journal of Paleontology 58:259269.Google Scholar
Yochelson, E. L., White, J. S. Jr., and Gordon, M. Jr. 1967. Aragonite and calcite in mollusks from the Pennsylvanian Kendrick Shale. U.S. Geological Survey Professional Paper 575:7678.Google Scholar
Yonge, C. M. 1947. The pallial organs in aspidobranch Gastropoda and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society of London B 232:443518.Google ScholarPubMed
Yonge, C. M. 1960. General characters of Mollusca. Pp. I3I36 in Moore, R. C. et al. 1960.Google Scholar
Supplementary material: PDF

Wagner and Erwin supplementary material

Supplementary Material

Download Wagner and Erwin supplementary material(PDF)
PDF 318.2 KB