Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:29:53.112Z Has data issue: false hasContentIssue false

Patterns of speciation in Jurassic Gryphaea

Published online by Cambridge University Press:  08 April 2016

Anthony Hallam*
Affiliation:
Department of Geological Sciences, University of Birmingham, Birmingham B15 2TT, England

Abstract

It is shown that the abundant Jurassic oyster Gryphaea provides material adequate to test biogeographic and evolutionary hypotheses involving speciation. Phyletic size increase is widespread if not characteristic and tends to be marked by a sharp initial increase followed by a longer period of stability. The larger size of phyletically younger forms is apparently because of greater age of individuals rather than a higher growth rate. Species durations fall within the range of the majority of Jurassic bivalve species. The detailed study of European Gryphaea indicates a pattern of punctuated equilibria allied with morphological trends, some of which are paedomorphic. Gradualistic, species selection and cladistic models of change are not supported. World-wide analysis of Gryphaea species supports centres of origin and migration rather than vicariance, and a relationship exists between migrational and evolutionary events and changes in the physical environment.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Behrendsen, O. 1922. Contribucion a la geologia de la pendiente oriental de la Cordillera Argentina. Actas Acad. Nac. Ciencias Cordoba. 7:150.Google Scholar
Cecioni, G. and Charrier, R. 1974. Relaciones entre la Cuenca Patagonica, la Cuence Andina y el Canal de Mozambique. Ameghiniana. 11:138.Google Scholar
Cox, L. R. 1952. The Jurassic lamellibranch fauna of Cutch (Kachh), No. 3; families Pectinidae, Amusiidae, Plicatulidae, Limidae, Osteridae and Trigoniidae. Paleontol. Indica ser. 9, vol. 3:1128.Google Scholar
Cox, L. R. 1965. Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. Bull. Brit. Mus. (Nat. Hist.) Geol. Suppl. 1:1213.Google Scholar
Cronin, J. E., Boaz, N. T., Stringer, C. B., and Rok, Y. 1981. Tempo and mode in hominid evolution. Nature. 292:113122.Google Scholar
Damborenea, S. E. and Manceñido, M. O. 1979. On the paleogeographical distribution of the pectinid genus Weyla (Bivalvia, Lower Jurassic). Palaeogeogr., Palaeoclimatol., Palaeoecol. 27:85102.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman Cooper; San Francisco.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York. Enay, R. 1973. Upper Jurassic (Tithonian) ammonites. Pp. 297307. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Gould, S. J. 1972. Allometric fallacies and the evolution of Gryphaea: a new interpretation based on White's criterion of geometric similarity. Pp. 91118. In: Dobzhansky, T., Hecht, M. K., and Steers, W. C., eds. Evolutionary Biology. Vol. 6.Google Scholar
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology. 6:119130.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkowski, J. J., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology. 3:2340.Google Scholar
Hallam, A. 1968. Morphology, palaeoecology and evolution of the genus Gryphaea in the British Lias. Phil. Trans. R. Soc. Lond. B254:91128.Google Scholar
Hallam, A. 1972. Diversity and density characteristics of Pliensbachian-Toarcian molluscan and brachiopod faunas of the North Atlantic. Lethaia. 5:389412.Google Scholar
Hallam, A. 1975. Jurassic Environments. Cambridge Univ. Press.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia. 9:245259.Google Scholar
Hallam, A. 1977a. Jurassic bivalve biogeography. Paleobiology. 3:5873.Google Scholar
Hallam, A. 1977b. Biogeographic evidence bearing on the creation of Atlantic seaways in the Jurassic. Milwaukee Publ. Mus., Spec. Publ. Biol. Geol. no. 2:2334.Google Scholar
Hallam, A. 1978a. How rare is phyletic gradualism? Evidence from Jurassic bivalves. Paleobiology. 4:1625.Google Scholar
Hallam, A. 1978b. Eustatic cycles in the Jurassic. Palaeogeogr., Palaeoclimatol., Palaeoecol. 23:132.Google Scholar
Hallam, A. 1981a. Facies Interpretation and the Stratigraphic Record. Freeman; Oxford and San Francisco.Google Scholar
Hallam, A. 1981b. The end-Triassic bivalve extinction event. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35:144.Google Scholar
Hallam, A. 1981c. A revised sea-level curve for the early Jurassic. J. Geol. Soc. Lond. 138:735743.Google Scholar
Hallam, A. and Gould, S. J. 1975. The evolution of British and American Middle and Upper Jurassic Gryphaea: a biometric study. Proc. R. Soc. Lond. B189:511542.Google Scholar
Hayami, I., Maeda, S., and Fuller, C. R. 1977. Some late Triassic Bivalvia and Gastropoda from the Domeyko Range of North Chile. Trans. Proc. Palaeontol. Soc. Japan. N.S. no. 108:202221.Google Scholar
Hoffman, A. 1981. Stochastic versus deterministic approach to paleontology: the question of scaling or metaphysics? N. Jb. Geol. Paläontol. Abh. 162:8096.Google Scholar
Kiparisova, L. D. 1938. Upper Triassic pelecypods of Siberia. Tsentral. Nauchno-Issled. Geol.-Razved. Inst. Mon. Paleontol. S.S.S.R. 17:155 (in Russian).Google Scholar
Lewin, R. 1980. Evolutionary theory under fire. Science. 210:883887.Google Scholar
Nelson, G. and Rosen, D. E., eds. 1981. Vicariance Biogeography: a Critique. Columbia Univ. Press; New York.Google Scholar
Patterson, C. 1981a. Methods of paleobiogeography. Pp. 446497. In: Nelson, G. and Rosen, D. E., eds. Vicariance Biogeography: a Critique. Columbia Univ. Press; New York. Patterson, C.1981b. Significance of fossils in determining evolutionary relationships. Annu. Rev. Ecol. System. 12:195–223.Google Scholar
Phillipi, R. A. 1899. Los Fossiles Secundarios de Chile. Govt. Chile; Santiago.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89:569584.Google Scholar
Scalia, S. 1912. La fauna del Trias superiore del Gruppo di Monte Judica. Mem. Accad. gioen. Catania. Ser. 5, vol. 5:158.Google Scholar
Schopf, T. J. M. 1981a. Evidence from findings of molecular biology with regard to the rapidity of genomic change: implications for species durations. Pp. 135192. In: Niklas, K. J., ed. Paleobotany, Paleoecology and Evolution. (Festschrift for Harlan P. Banks.) Praeger; New York.Google Scholar
Schopf, T. J. M. 1981b. Punctuated equilibrium and evolutionary stasis. Paleobiology. 7:156166.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. Freeman; San Francisco.Google Scholar
Stenzel, H. B. 1971. Oysters. Treatise on Invertebrate Paleontology, Part N, vol. 3. Geol. Soc. Am.; Boulder.Google Scholar
Stevens, G. R. 1973. Jurassic belemnites. Pp. 259274. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Wiley, E. O. 1981. Phylogenetics: the theory and practice of phylogenetic systematics. Wiley, New York.Google Scholar
Williamson, P. G. 1981. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.Google Scholar