Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T13:14:37.591Z Has data issue: false hasContentIssue false

Pelagic species diversity, biogeography, and evolution

Published online by Cambridge University Press:  26 February 2019

Richard D. Norris*
Affiliation:
MS-23, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1541. E-mail: RNorris@whoi.edu

Abstract

Pelagic (open-ocean) species have enormous population sizes and broad, even global, distributions. These characteristics should damp rates of speciation in allopatric and vicariant evolutionary models since dispersal should swamp diverging populations and prevent divergence. Yet the fossil record suggests that rates of evolutionary turnover in pelagic organisms are often quite rapid, comparable to rates observed in much more highly fragmented terrestrial and shallow-marine environments. Furthermore, genetic and ecological studies increasingly suggest that species diversity is considerably higher in the pelagic realm than inferred from many morphological taxonomies.

Zoogeographic evidence suggests that ranges of many pelagic groups are much more limited by their ability to maintain viable populations than by any inability to disperse past tectonic and hydrographic barriers to population exchange. Freely dispersing pelagic taxa resemble airborne spores or wind-dispersed seeds that can drift almost anywhere but complete the entire life cycle only in favorable habitats. It seems likely that vicariant and allopatric models for speciation are far less important in pelagic evolution than sympatric or parapatric speciation in which dispersal is not limiting. Nevertheless, speciation can be quite rapid and involve cladogenesis even in cases where morphological data suggest gradual species transitions. Indeed, recent paleoecological and molecular studies increasingly suggest that classic examples of “phyletic gradualism” involve multiple, cryptic speciation events.

Paleoceanographic and climatic change seem to influence rates of turnover by modifying surface water masses and environmental gradients between them to create new habitats rather than by preventing dispersal. Changes in the vertical structure and seasonality of water masses may be particularly important since these can lead to changes in the depth and timing of reproduction. Long-distance dispersal may actually promote evolution by regularly carrying variants of a species across major oceanic fronts and exposing them to very different selection pressures than occur in their home range. High dispersal in pelagic taxa also implies that extinction should be difficult to achieve except though global perturbations that prevent populations from reestablishing themselves following local extinction. High rates of extinction in some pelagic groups suggests either that global perturbations are common, or that the species are much more narrowly adapted than we would infer from current taxonomies.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Antoine, D., Andre, J.-M., and Morel, A. 1996. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles 10:5769.Google Scholar
Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390398.Google Scholar
Bakun, A. 1996. Patterns in the ocean. National Oceanic and Atmospheric Administration, Washington, D.C. Google Scholar
, A. W. H. 1980. Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology 5:283310.Google Scholar
Bell, T. H. Jr., Mays, A. B., and deWitt, W. P. 1974. Upper ocean stability: a compilation of density and Brunt-Väisälä frequency distribution for the upper 500 m of the World Ocean. Naval Research Laboratory, Washington, D.C. Google Scholar
Benzie, J. A., and Williams, S. T. 1997. Genetic structure of giant clam (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51:768783.Google Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43(Suppl. to No. 1):1166.Google Scholar
Bijma, J., Erez, J., and Hemleben, C. 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research 20:117127.Google Scholar
Bottomley, M., Folland, C. K., Hsiung, J., Newell, R. E., and Parker, D. E. 1990. Global ocean surface temperature atlas. The Meteorological Office, Bracknell, England.Google Scholar
Bouvier-Soumagnac, Y., and Duplessy, J. C. 1985. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research 15:302320.Google Scholar
Briggs, J. C. 1994. Species diversity: land and sea compared. Systematic Biology 43:130135.Google Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, ecology, and behavior. University of Chicago Press, Chicago.Google Scholar
Brown, C. W., and Yoder, J. A. 1994. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research 99(C4):747782.Google Scholar
Bucklin, A. 1986. The genetic structure of Zooplankton populations. Pp. 3541 in Pierrot-Bults et al. 1986.Google Scholar
Bucklin, A., and Wiebe, P. H. 1998. Low microchondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciation. Journal of Heredity 89:383392.Google Scholar
Bucklin, A., LaJeunesse, T. C., Curry, E., Wallinga, J., and Garrison, K. 1996. Molecular diversity of the copepod: genetic evidence of species and population structure in the North Atlantic Ocean. Journal of Marine Research 54:285310.Google Scholar
Bucklin, A., Smolenack, S. B., Bentley, A. M., and Wiebe, P. H. 1997. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I. Journal of Plankton Research 19:17631781.Google Scholar
Chaisson, W. P., and Leckie, R. M. 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western equatorial Pacific). Pp. 137178 in Berger, W. H., Kronke, L. W., Mayer, L. A., et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 130. College Station, Tex.Google Scholar
Chaisson, W. P., and Pearson, P. N. 1997. Planktonic foraminifer biostratigraphy at Site 925: middle Miocene-Pleistocene. Proceedings of the Ocean Drilling Program, Scientific Results 154:331. College Station, Tex.Google Scholar
Collins, L. S. 1989. Evolutionary rates of a rapid radiation: the Paleogene planktic foraminifera. Palaios 4:251263.Google Scholar
Collins, T. 1996. Molecular comparisons of transisthmian species pairs: rates and patterns of evolution. Pp. 303334 in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Coyne, J. A. 1992. Genetics and speciation. Nature 355:511515.Google Scholar
Darling, K. F., Wade, C. M., Kroon, D., Leigh Brown, A. J., and Bijma, J. 1999. The diversity and distribution of modern planktic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulations. Paleoceanography 14:312.Google Scholar
Darling, K. F., Wade, C. M., Stewart, I. A., Kroon, D., Dingle, R., and Leigh Brown, A. J. 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:4347.Google Scholar
de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J. 1999. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences USA 96:28642868.Google Scholar
de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J. In press. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphological and environmental evidence. Paleobiology 27(1).Google Scholar
DeLong, E. F., Wu, K. Y., Prizelin, D. D., and Jovine, R. V. M. 1994. High abundance of Archea in Antarctic marine picoplankton. Nature 371:695697.Google Scholar
Deuser, W. G. 1987. Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleoceanographic significance. Journal of Foraminiferal Research 17:1427.Google Scholar
Dieckmann, U., and Doebell, M. 1999. On the origin of species by sympatric speciation. Nature 400:354–351.Google Scholar
Dortch, Q., and Packhard, T. T. 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep-Sea Research 36:223240.Google Scholar
Emery, W. J., and Meincke, J. 1986. Global water masses: summary and review. Oceanologica Acta 9:383391.Google Scholar
Emiliani, C. 1982. Extinctive evolution: extinctive and competitive evolution combine into a unified model of evolution. Journal of Theoretical Biology 97:1333.Google Scholar
Endler, J. A. 1977. Geographic variation, speciation, and clines. Monographs in Population Biology Vol. 10. Princeton University Press, Princeton, N.J. Google Scholar
Etter, R. J., Rex, M. A., Chase, M. C., and Quattro, J. M. 1999. A genetic dimension to deep-sea biodiversity. Deep-Sea Research 46:10951099.Google Scholar
Fairbanks, R. G., and Wiebe, P. H. 1980. Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance. Science 209:15241526.Google Scholar
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Bé., A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841844.Google Scholar
Ferris, M. J., and Palenik, B. 1998. Niche adaptation in ocean cyanobacteria. Nature 396:226228.Google Scholar
Fleminger, A. 1986. The Pleistocene equatorial barrier between the Indian and Pacific oceans and a likely cause for Wallace's line. Pp. 8497 in Pierrot-Bults et al. 1986.Google Scholar
Fuhrman, J. A., and Campbell, L. 1998. Microbial microdiversity. Nature 393:410411.Google Scholar
Gaard, E. 1996. Life cycle, abundance and transport of Calanus finmarhicus in Faroese waters. Ophelia 44:5970.Google Scholar
Garfield, P. C., Packhard, T. T., Friederich, G. E., and Codispoli, L. A. 1983. A subsurface particle maximum layer and enhanced microbial activity in the secondary nitrate maximum of the northeastern tropical Pacific Ocean. Journal of Marine Research 41:747768.Google Scholar
Gibbs, R. H. 1986. The stomioid fish genus Eustomias and the oceanic species concept. Pp. 98103 in Pierrot-Bults et al. 1986.Google Scholar
Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:6063.Google Scholar
Gislason, A., and Astthorsson, O. S. 1996. Seasonal development of Calanus finmarchicus along an inshore-offshore gradient southwest of Iceland. Ophelia 44:7184.Google Scholar
Gold, J. R., and Richardson, L. R. 1998. Mitochondrial DNA diversification and population structure in fishes from the Gulf of Mexico and western Atlantic. Journal of Heredity 89:404414.Google Scholar
Hastenrath, S., and Merle, J. 1987. Annual cycle of subsurface thermal structure in the tropical Atlantic Ocean. Journal of Physical Oceanography 17:15181538.Google Scholar
Healy-Williams, N., Ehrlich, R., and Williams, D. F. 1985. Morphometric and stable isotopic evidence for subpopulations of Globorotalia truncatulinoides. Journal of Foraminiferal Research 15:242253.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.Google Scholar
Honjo, S. 1996. Fluxes of particles to the interior of the open oceans. Pp. 91154 in Ittekkot, V., Schäfer, P., Honjo, S., and Depetris, P. J., eds. Particle flux in the ocean. Wiley, New York.Google Scholar
Honjo, S., and Manganini, S. J. 1993. Annual biogenic particle fluxes to the interior of the North Atlantic Ocean: studies at 34°N 21°W and 48°N 21°W. Deep-Sea Research 40:587607.Google Scholar
Honjo, S., Dymond, J., Prell, W., and Ittekkot, V. 1999. Monsoon-controlled export fluxes to the interior of the Arabian Sea. Deep-Sea Research II 46:18591902.Google Scholar
Howard, D. J., and Berlocher, S. H., eds. 1998. Endless forms: species and speciation. Oxford University Press, Oxford.Google Scholar
Huber, B. T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinoides siphonifera (d'Orbigny). Paleobiology 23:3362.Google Scholar
Hunter, R. S. T., Arnold, A. J., and Parker, W. C. 1988. Evolution and homeomorphy in the development of the Paleocene Planorotalites psuedomenardii and the Miocene Globorotalia (Globorotalia) margaritae lineages. Micropaleontology 31:181192.Google Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996a. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella. Paleobiology 22:266281.Google Scholar
Kelly, D. C., Bralower, T. J., Zachos, J. C., Silva, I. Permoli, and Thomas, E. 1996b. Rapid diversification of planktonic foraminifera in the topical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423426.Google Scholar
Kelly, D. C., Bralower, T. J., and Zachos, J. C. 1998. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 141:139161.Google Scholar
Kitchell, J. F. 1987. The temporal distribution of evolutionary and migrational events in pelagic systems: episodic or continuous? Paleoceanography 2:437487.Google Scholar
Knowlton, N. 1993. Sibling species in the sea. Annual Reviews of Ecology and Systematics 24:189216.Google Scholar
Knowlton, N. 1997. Species of marine invertebrates: a comparison of the biological and phylogenetic species concepts. Pp. 199219 in Claridge, M. F., Dawah, H. A., and Wilson, M. R., eds. Species: the units of biodiversity. Chapman and Hall, New York.Google Scholar
Knowlton, N. 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:7390.Google Scholar
Knowlton, N., and Weight, L. A. 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London B 265:22572263.Google Scholar
Knowlton, N., Weight, L. A., Solórzano, L. A., Mills, E. K., and Bermingham, E. 1993. Divergence in proteins, Mitochondrial DNA, and the reproductive compatibility across the Isthmus of Panama. Science 260:16291632.Google Scholar
Kondrashov, A. S., and Kondrashov, F. A. 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400:351354.Google Scholar
Kucera, M., and Malmgren, B. A. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera. Paleobiology 24:4963.Google Scholar
Lazarus, D. 1983. Speciation in pelagic protista and its study in the planktonic microfossil record: a review. Paleobiology 9:327341.Google Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.Google Scholar
Lazarus, D., Hilbrecht, H., Pencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides. Paleobiology 21:2851.Google Scholar
Lessios, H. A. 1998. The first stage of speciation as seen in organisms separated by the Isthmus of Panama. Pp. 186201 in Howard and Berlocher 1998.Google Scholar
Lohmann, G. P. 1992. Increasing seasonal upwelling in the subtropical South Atlantic over the past 700,000 yrs: evidence from deep-living planktonic foraminifera. Marine Micropaleontology 19:112.Google Scholar
Lohmann, G. P., and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the late Pleistocene: gradual evolution or ocean change? Paleobiology 9:414421.Google Scholar
Malmgren, B. A., and Berggren, W. A. 1987. Evolutionary changes in some late Neogene planktonic foraminifera lineages and their relationships to paleoceanographic changes. Paleoceanography 2:445456.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP 284, Southwest Pacific. Paleobiology 7:230240.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic Foraminifera. Paleobiology 9:377389.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1984. Species formation through punctuated gradualism in plantonic foraminifera. Science 225:317319 Google Scholar
Malmgren, B. A., Kucera, M., and Ekman, G. 1996. Evolutionary changes in supplementary apertural characteristics of the late Neogene Spheroidinella dehiscens lineage (planktonic foraminifera). Palaios 11:96110.Google Scholar
McGowan, J. A. 1971. Oceanic biogeography of the Pacific. Pp. 374 in Funnell, B. M. and Riedel, W. R., eds. The micropalaeontology of the oceans. Cambridge University Press, Cambridge.Google Scholar
McGowan, J. A. 1972. The nature of oceanic ecosystems. Pp. 928 in Miller, C. B., ed. The biology of the oceanic Pacific. Oregon State University Press, Corvallis.Google Scholar
McGowan, J. A. 1986. The biogeography of pelagic ecosystems. Pp. 191200 in Pierrot-Bults et al. 1986.Google Scholar
McGowan, J. A., and Walker, P. W. 1993. Pelagic diversity patterns. Pp. 203214 in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities. University of Chicago Press, Chicago.Google Scholar
Michaels, A. F., and Silver, M. W. 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Research 35:473490.Google Scholar
Miya, M., and Nishida, M. 1997. Speciation in the open ocean. Nature 389:803804.Google Scholar
Mooney-Seus, M. L., and Stone, G. S. 1997. The forgotten giants. Ocean Wildlife Campaign, Boston.Google Scholar
Moore, L. R., Rocap, G., and Chisholm, S. W. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464467.Google Scholar
Mulhern, P. J. 1987. The Tasman Front: a study using satellite infrared imagery. Journal of Physical Oceanography 17:11481155.Google Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.Google Scholar
Norris, R. D. 1992. Extinction selectivity and ecology in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 95:117.Google Scholar
Norris, R. D. 1996a. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.Google Scholar
Norris, R. D. 1996b. Symbiosis as an evolutionary innovation in the radiation of planktic foraminifera. Paleontological Society Special Publication 8:291.Google Scholar
Norris, R. D. 1998. Neogene planktonic foraminifer biostratigraphy of Leg 159 sites; Eastern Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results 159:445479. College Station, Tex.Google Scholar
Norris, R. D. 1999. Hydrographic and tectonic control of plankton distribution and evolution. Pp. 173193 in Abrantes, F. and Mix, A., eds. Reconstructing ocean history: a window into the future. Plenum, London.Google Scholar
Norris, R. D., and Vargas, C. de. 2000. Evolution all at sea. Nature 405:2324.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993. Evolution of depth ecology in the planktic Foraminifera lineage Globorotalia (Fohsella). Geology 21:975978.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1994. Evolutionary ecology of Globorotalia (Globoconella) (planktic foraminifera). Marine Micropaleontology 23:121145.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1996. What is gradualism? Cryptic speciation in globorotaliid planktic foraminifera. Paleobiology 22:386405.Google Scholar
Olsen, G. J. 1990. Variation among the masses. Nature 345:20.Google Scholar
Orr, W. N. 1967. Secondary calcification in the foraminiferal genus Globorotalia. Science 157:15541555.Google Scholar
Palumbi, S. R. 1998. Species formation and the evolution of gamete recognition loci. Pp. 271278 in Howard and Berlocher 1998.Google Scholar
Palumbi, S. R. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25:547572.Google Scholar
Palumbi, S. R., Grabowsky, G., Duda, T., Geyer, L., and Tachino, N. 1997. Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506.Google Scholar
Parsons, T. R., Takahashi, M., and Hargrave, B. 1984. Biological oceanographic processes. Pergamon, New York.Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1997. Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). Journal of the Geological Society, London 154:295302.Google Scholar
Pierrot-Bults, A. C., and van der Spoel, S. 1979. Speciation in macrozooplankton. Pp. 144167 in van der Spoel, S. and Pierrot-Bults, A. C., eds. Zoogeography and diversity of plankton. Halstead, New York.Google Scholar
Pierrot-Bults, A. C., van der Spoel, S., Zahuranec, B. J., and Johnson, R. K., eds. 1986. Pelagic Biogeography. UNESCO, Paris.Google Scholar
Quillévéré, F., Norris, R. D., Moussa, I., and Berggren, W. A. 2001. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera). Paleobiology 27(2) (in press).Google Scholar
Raff, R. A. 1996. The shape of life. University of Chicago Press, Chicago.Google Scholar
Reynolds, L., and Thunell, R. C. 1985. Seasonal succession of planktonic foraminifera in the subpolar North Pacific. Journal of Foraminiferal Research 15:282301.Google Scholar
Rice, W. R., and Hostert, E. E. 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47:16371653.Google Scholar
Rögl, F. 1985. Late Oligocene and Miocene planktic foraminifera of the Central Paratethys. Pp. 315328 in Bolli, H. M., Saunders, J. B. and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Sautter Reynolds, L. R., and Thunell, R. C. 1991. Seasonal variability in the d18O and d13C of planktonic foraminifera from an upwelling environment: sediment trap results from the San Pedro Basin, Southern California bight. Paleoceanography 6:307334.Google Scholar
Schmitz, W. J. Jr., 1996. On the world ocean circulation, Vol. 1. Some global features: North Atlantic circulation. Woods Hole Oceanographic Institution Technical Report WHOI-96–03:1141.Google Scholar
Schneider, C. E., and Kennett, J. P. 1996. Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 22:282303.Google Scholar
Sieburth, J. M. 1986. Dominant microorganisms of the upper ocean: form and function, spatial distribution and photoregulation of biochemical processes. Pp. 157186 in Burton, J. D., Brewer, P. G., and Chesselet, R., eds. Dynamic processes in the chemistry of the upper ocean. Plenum, London.Google Scholar
Silver, M. W., and Allredge, A. L. 1981. Bathypelagic marine snow: deep-sea algal and detrital community. Journal of Marine Research 39:501530.Google Scholar
Snell, T. W., and Hawkinson, C. A. 1983. Behavioral reproductive isolation among populations of the rotifer Branchionus plicatilis. Evolution 37:12941305.Google Scholar
Sorhannus, U. 1990a. Punctuated morphological change in a Neogene diatom lineage: “local” evolution or migration? Historical Biology 3:241247.Google Scholar
Sorhannus, U. 1990b. Tempo and mode of morphological evolution in two Neogene diatom lineages. Pp. 329370 in Hecht, M. K., Wallace, B., and MacIntyre, R. J., eds. Evolutionary biology. Plenum, London.Google Scholar
Spindler, M., Anderson, O. R., Hemleben, C., and Bé., A. W. H. 1978. Light and electron microscopic observations of gametogenesis in Hastigerina pelagica (Foraminifera). Journal of Protozoology 25:427433.Google Scholar
Spindler, M., Hemleben, C., Bayer, U., , A.W.H., and Anderson, O. R. 1979. Lunar periodicity in the planktonic foraminifer Hastigerina pelagica. Marine Ecology Progress Series 1:6164.Google Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.Google Scholar
Tauber, C. A., and Tauber, M. J. 1989. Sympatric speciation in insects: perception and perspective. Pp. 307344 in Otte, D. and Endler, J. A., eds. Speciation and its consequences. Sinauer, Sunderland, Mass.Google Scholar
Tauber, C. A., Tauber, M. J., and Nechols, J. R. 1977. Two genes control seasonal isolation in sibling species. Science 197:592593.Google Scholar
Thunell, R. C., and Honjo, S. 1987. Seasonal and interannual changes in planktonic foraminiferal production in the North Pacific. Nature 328:335337.Google Scholar
Thunell, R., and Sautter Reynolds, R. L. 1992. Planktonic foraminiferal faunal and stable isotopic indices of upwelling: a sediment trap study in the San Pedro Basin, Southern California Bight. Pp. 7791 in Summerhayes, C. P., Prell, W. L., and Emeis, K. C., eds. Upwelling systems: evolution since the Early Miocene. Geological Society of London, London.Google Scholar
Thunell, R. C., Curry, W. B., and Honjo, S. 1983. Seasonal variation in the flux of planktonic foraminifera: time series sediment trap results from the Panama Basin. Earth and Planetary Science Letters 654:4455.Google Scholar
Tregenza, T., and Butlin, R. K. 1999. Speciation without isolation. Nature 400:311312.Google Scholar
van der Spoel, S. 1983. Patterns in plankton distribution and the relation to speciation: the dawn of pelagic biogeography. Pp. 291334 in Sims, R. W., Price, J. H., and Whalley, P. E. S., eds. Evolution, time and space: the emergence of the biosphere. Academic Press, London.Google Scholar
van Soest, R. W. M. 1975. Zoogeography and speciation in the Salpidae (Tunicata, Thaiacea). Beaufortia 23:181215.Google Scholar
Vrijenhoek, R. C. 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. Journal of Heredity 88:285293.Google Scholar
Wefer, G. 1989. Particle flux in the Ocean: effects of episodic production. Pp. 139153 in Berger, W. H., Smetacek, V. S., and Wefer, G., eds. Productivity of the ocean: present and past. Wiley, New York.Google Scholar
Wefer, G., and Fischer, G. 1993. Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic. Deep-Sea Research 40:16131645.Google Scholar
Wei, K.-Y. 1994. Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella. Paleobiology 20:6684.Google Scholar
Wei, K.-Y., and Kennett, J. P. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1:6784.Google Scholar
Wei, K.-Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345363.Google Scholar