Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T10:41:52.224Z Has data issue: false hasContentIssue false

Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod

Published online by Cambridge University Press:  08 February 2016

Kathleen A. Campbell
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740
David J. Bottjer
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740

Abstract

Brachiopods generally have not been considered to be typical or significant faunal components of modern or ancient hydrothermal vent and cold-seep settings. The Early Cretaceous (Neocomian) rhynchonellide brachiopod Peregrinella has long been viewed as a paleontological curiosity because of its distinctive morphology, status as the largest Mesozoic brachiopod, anomalous stratigraphic associations, and widespread, yet discontinuous paleogeographic distribution. Examination of all worldwide Peregrinella occurrences (14) indicates restriction of this brachiopod to ancient cold-seeps. It is probable that Peregrinella grew to large sizes in such great abundances at fossil cold-seep sites because of a richly organic food supply generated by localized fluid seepage and bacterial chemosynthetic activity. Living brachiopods are not known to harbor chemosymbiotic bacteria in their tissues; however, direct chemoautotrophic utilization of reduced fluids by Peregrinella cannot be rejected or demonstrated at present. Peregrinella occurs at widely separated cold-seeps of Neocomian age (e.g., California, Mexico, Tibet, Europe), yet its mode of dispersal and larval development is unknown. In modern hydrothermal vents of the deep-sea, organism dispersal occurs along oceanic ridges, where benthic faunas display both planktotrophic and nonplanktotrophic larval-mode types. Peregrinella may represent a Mesozoic relic of a long-lived “lineage” of vent-seep associated rhynchonellides from the Paleozoic (e.g., ?Eoperegrinella, Dzieduszyckia), but major gaps in the stratigraphic record between these rhynchonellide occurrences, and the lack of rigorous phylogenetic analysis for these groups preclude a clear resolution of the origin(s) of vent-seep brachiopods at present.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1965. The adaptations of Mesozoic brachiopods to different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 1:143172.CrossRefGoogle Scholar
Ager, D. V. 1967. Some Mesozoic brachiopods in the Tethys region. Pp. 135151in Adams, C. G. and Ager, D. V., eds. Aspects of Tethyan biogeography. Systematics Association Publication 7.Google Scholar
Ager, D. V. 1968. The supposedly ubiquitous Tethyan brachiopod Halorella and its relations. Journal of the Paleontological Society of India V-IX:5470.Google Scholar
Ager, D. V. 1986. Migrating fossils, moving plates and an expanding Earth. Modern Geology 10:377390.Google Scholar
Ager, D. V., Childs, A., and Pearson, D. A. B. 1972. The evolution of the Mesozoic Rhynchonellidea. Geobios 5:157233.CrossRefGoogle Scholar
Ager, D. V., Cossey, S. P. J., Mullin, P. R., and Walley, C. D. 1976. Brachiopod ecology in mid-Paleozoic sediments near Khenifra, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 20:171185.CrossRefGoogle Scholar
Aharon, P. 1994. Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: an introduction. Geo-Marine Letters 14:6973.CrossRefGoogle Scholar
Aharon, P., Terzi, G., Ricci Lucchi, R., Vai, G. G., and Taviani, M. 1993. Fossil record of hydrocarbon and fluid venting imprinted in the Miocene-age Lucina Limestones of the northern Appennines, Italy. America Association of Petroleum Geologists Annual Convention Program:66.Google Scholar
Ascher, E. 1906. Die Gastropoden, Bivalven und Brachiopoden der Grödischter Schichten. Beiträge zur Paläontologie u. Geologie Österreich-Ungarns u. des Orients 19:166167.Google Scholar
Bancila, I. 1941. L'étude géologique dans les Monts Haghimas-Ciuc. Annuaire du Comité géologique 21:1117. Bucuresti.Google Scholar
Barry, J. P., Kochevar, R. E., Greene, H. G., Robison, B. H., Baxter, C. H., Orange, D., and Harrold, C. H. 1993. Biology of cold seep communities in Monterey Bay California. American Zoologist 33:15A.Google Scholar
Beauchamp, B., and Savard, M. 1992. Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7:434450.CrossRefGoogle Scholar
Beauchamp, B., Krouse, H. R., Harrison, J. C., Nassichuk, W. W., and Eliuk, L. S. 1989. Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic. Science 244:5356.CrossRefGoogle ScholarPubMed
Berkland, J. O. 1973. Rice Valley Outlier—new sequence of Cretaceous-Paleocene strata in Northern Coast Ranges, California. Geological Society of America Bulletin 84:23892406.2.0.CO;2>CrossRefGoogle Scholar
Biernat, G. 1957. On Peregrinella multicarinata (Lamarck) (Brachiopoda). Acta Palaeontologica Polonica 2:1950.Google Scholar
Biernat, G. 1967. New data on the genus Dzieduszyckia Siemiradski, 1909 (Brachiopoda). Acta Palaeontologica Polonica 12:133156.Google Scholar
Boller, K. 1963. Stratigraphische und mikropalaontologische untersuchungen in Neocom der Kippendecke (ostlich der Rhone). Eclogae geologicae Helvetiae 56:15102.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Bottjer, D. J., Campbell, K. A., Schubert, J. K., and Droser, M. L. 1995. Palaeoecological models, non-uniformitarianism and tracking the changing ecology of the past. Pp. 726in Bosence, D. and Allison, P., eds. Marine palaeoenvironmental analysis from fossils. Geological Society of London Special Publication 83.Google Scholar
Campbell, K. A. 1992. Recognition of a Mio-Pliocene cold seep setting from the northeast Pacific convergent margin, Washington, U.S.A. Palaios 7:422433.CrossRefGoogle Scholar
Campbell, K. A. 1995. Dynamic development of Jurassic-Pliocene cold-seeps, convergent margin of western North America. Ph.D. dissertation. University of Southern California, Los Angeles.Google Scholar
Campbell, K. A., and Bottjer, D. J. 1993a. Fossil cold seep biotic patterns, western North America. Geological Society of America Abstracts with Programs 25(6):A389.Google Scholar
Campbell, K. A., and Bottjer, D. J. 1993b. Fossil cold seeps (Jurassic-Pliocene) along the convergent margin of western North America. National Geographic Research & Exploration 9:326343.Google Scholar
Campbell, K. A., and Bottjer, D. J. 1995. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold-seep environments. Geology 23:321324.2.3.CO;2>CrossRefGoogle Scholar
Campbell, K. A., Carlson, C., and Bottjer, D. J. 1993. Fossil cold seep limestones and associated chemosymbiotic macroinvertebrate faunas, Jurassic-Cretaceous Great Valley Group, California. Pp. 3750in Graham, S. and Lowe, D., eds. Advances in the sedimentary geology of the Great Valley Group. Pacific Section, Society of Economic Paleontologists and Mineralogists, no. 73.Google Scholar
Carlson, C. 1984a. Stratigraphic and structural significance of foliate serpentinite breccias, Wilbur Springs. Pp. 108112in Carlson, C., ed. Depositional facies of sedimentary serpentinite: selected examples from the Coast Ranges, California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Field Trip Guidebook, no. 3.Google Scholar
Carlson, C. 1984b. Description of field trip stops 7, 8, and 9. Pp. 117121in Carlson, C., ed. Depositional facies of sedimentary serpentinite: selected examples from the Coast Ranges, California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Field Trip Guidebook, no. 3.Google Scholar
Cavanaugh, C. M. 1985. Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Pp. 373388in Jones, 1985.Google Scholar
Chryploff, G. 1958. Ein fund von Peregrinella cf. peregrina d'Orbigny in der Unteren Kreide Norddeutschlands. Zeitschrift für Geologie 2/3:70.Google Scholar
Clari, P., Gagliardi, C., Governa, M. E., Ricci, B., and Zuppi, G. M. 1988. I calcari di Marmorito: una testimonianza di processi diagenetici in presenza di metano. Bolletino Museo Regionale di Scienze Naturali Torino 6:197216.Google Scholar
Cloud, P. E. Jr., and Boucot, A. J. 1971. Dzieduszyckia in Nevada. Pp. 175180in Dutro, J. T. Jr., ed. Paleozoic perspectives: a paleontological tribute to G. Arthur Cooper. Smithsonian Contributions to Paleobiology 3.Google Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record. Pp. 431478in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Curry, G. B., Ansell, A. D., James, M., and Peck, L. 1989. Physiological constraints on living and fossil brachiopods. Royal Society of Edinburgh Transactions (Earth Sciences) 80:255262.CrossRefGoogle Scholar
Davidson, T. 1850. Notes on an examination of Lamarck's species of fossil Terebratulae. The Annals and Magazine of Natural History (ser. 2) 5(30):433449.CrossRefGoogle Scholar
Dubé, T. E. 1988. Tectonic significance of Upper Devonian igneous rocks and bedded barite, Roberts Mountain allochthon, Nevada, U.S.A. Pp. 235249in McMillan, N. S. M., Embry, A. F., and Glass, D. J., eds. Devonian of the World (Vol. II, Sedimentation). Canadian Society of Petroleum Geologists.Google Scholar
Fagerstrom, J. A. 1987. The evolution of reef communities. J. Wiley and Sons, New York.Google Scholar
Ferry, S. 1984. Domaine vocontien. Pp. 313317in Cotillon, P., ed. Chapitre Crétacé inferieur, Synthèse géologique du Sud-Est de la France. Memoires du Bureau de recherches géologiques et minières 125.Google Scholar
Fisher, C. R. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Reviews in Aquatic Sciences 2:399436.Google Scholar
Flügel, E. 1982. Microfacies analysis of limestones. Springer, Berlin.CrossRefGoogle Scholar
Fryer, P. 1992. A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. Pp. 593614in Fryer, P., et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 125.Google Scholar
Gabb, W. M. 1869. Palaeontologia of California, 2: Miocene. Geological Survey of California, Palaeontology. Los Angeles.Google Scholar
Gaidon, J. L., Martin-Calle, S., and Boudeulle, M. 1988. Pyrite from concretion pipes in Mesozoic shales: mineralogical and chemical evidence of hydrothermal origin. Marine Geology 84:239256.CrossRefGoogle Scholar
Gaillard, C., Bourseau, J.-P., Boudeulle, M., Pailleret, P., Rio, M., and Roux, M. 1985. Les pseudo-biohermes de Beauvoisin (Drôme): un site hydrothermal sur la marge téthysienne à l'Oxfordien? Bulletin de la Société Géologique de France 1:6978.CrossRefGoogle Scholar
Gaillard, C., Rio, M., Rolin, Y., and Roux, M. 1992. Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7:451465.CrossRefGoogle Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Grant, R. E. 1966. Spine arrangement and life habits of the productoid brachiopod Waagenoconcha. Journal of Paleontology 40:10631069.Google Scholar
Grant, R. E. 1968. Structural adaptation in two Permian brachiopod genera, Salt Range, West Pakistan. Journal of Paleontology 46:136.Google Scholar
Grant, R. E. 1981. Living habits of ancient articulate brachiopods. Pp. 127140in Dutro, J. T. and Boardman, R. S., eds. Lophophorates, notes for a short course. University of Tennessee Studies in Geology 5. Knoxville, Tenn.CrossRefGoogle Scholar
Haggerty, J. A. 1987. Petrology and geochemistry of Neogene sedimentary rocks from Mariana forearc seamounts: implications for emplacement of the seamounts. Pp. 175185in Keating, B. H., Fryer, P., Batiza, R. and Boehlert, G. W., eds. Seamounts, islands and atolls. Geophysical Monograph Series 43.Google Scholar
Haggerty, J. A. 1991. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to forearc tectonics. Marine Geology 102:293309.CrossRefGoogle Scholar
Hammen, C. S. 1977. Brachiopod metabolism and enzymes. American Zoologist 17:141147.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press.Google Scholar
Haymon, R. C., and Koski, R. 1985. Evidence of an ancient hydrothermal vent community: fossil worm tubes in Cretaceous sulfide deposits of the Samail Ophiolite, Oman. Pp. 5766in Jones, 1985.Google Scholar
Hecker, B. 1985. Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. Pp. 465473in Jones, 1985.Google Scholar
Hollard, H. 1967. Le Devonien du Maroc et du Sahara Nord-Occidental. Pp. 203244in Oswald, D. H., ed. International Symposium on the Devonian System (Vol. I). Alberta Society of Petroleum Geologists, Calgary.Google Scholar
Hollard, H., and Morin, P. 1973. Les gisements de Dzieduszyckia (Rhynchonellidea) du Famennian inférior du Massif hercynien central du Maroc. Notes du Services géologique du Maroc 33(249):714.Google Scholar
Hollard, H., Lys, M., Mauvier, A., and Morin, M. 1970. Précisions sur l'âge famennien inférior des Dzieduszyckia (Rhynchonellidea) du Massif hercynien central du Maroc. Comptes Rendus de l'Académie de Sciences, Paris (sér. D) 270:31773180.Google Scholar
Hou, H.-F., and Wang, J.-X. 1984. The discovery of Early Cretaceous Peregrinella (Brachiopoda) in Xizang (Tibet). Bulletin of the Chinese Academy of Geological Sciences 10:207215.Google Scholar
Hovland, M. and Judd, A. G. 1988. Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London.Google Scholar
Imlay, R. W. 1959. Succession and speciation of the pelecypod Aucella. United States Geological Survey Professional Paper 314-G:155169.Google Scholar
Ingersoll, R. V., and Dickinson, W. R. 1981. Great Valley Group (sequence), Sacramento Valley, California. Pp. 133in Frizzell, V., ed. Upper Mesozoic Franciscan rocks and Great Valley sequence, central Coast Ranges, California. Annual Meeting Pacific Section SEPM Field Trips 1 and 4. Pacific Section, Society of Economic Paleontologists and Mineralogists 18.Google Scholar
James, M. A., Ansell, A. D., Collins, M. J., Curry, G. B., Peck, L. S., and Rhodes, M. C. 1992. Biology of living brachiopods. Advances in Marine Biology 28:175387.CrossRefGoogle Scholar
Jannasch, H. W. and Mottl, M. J. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717725.CrossRefGoogle ScholarPubMed
Jones, M. L., ed. 1985. Hydrothermal vents of the eastern Pacific: an overview. Bulletin of the Biological Society of Washington no. 6.Google Scholar
Jones, D. L., Bailey, E. H., and Imlay, R. W. 1969. Structural and stratigraphic significance of the Buchia zones in the Colyear Springs-Paskenta areas, California. United States Geological Survey Professional Paper 647-A:124.Google Scholar
Kauffman, E. G., and Howe, B. M. 1990. Evolutionary and ecological significance of Cretaceous submarine spring communities in Colorado: refugia taxa or new adaptations? Geological Association of Canada—Mineralogical Association of Canada Program with Abstracts 15:A68.Google Scholar
Kilian, W. 1913. Handbuch der Erdgeschichte, 2: Das Mezozoicum, Band. 3: Kreide Abt. 1: Unterkreide (Palaeocretaceum). Lethea geognostica. Stuttgart.Google Scholar
Koski, R. A., Lonsdale, P. F., Shanks, W. C., Berndt, M. E., and Howe, S. S. 1985. Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of the Guaymas Basin, Gulf of California. Journal of Geophysical Research 90(B8):66956707.CrossRefGoogle Scholar
Kulm, L. D., and Suess, E. 1990. Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. Journal of Geophysical Research 95:88998915.CrossRefGoogle Scholar
Land, L. S. 1989. The carbon and oxygen isotopic chemistry of surficial shallow marine carbonate cement and Quaternary limestone and dolomite. Pp. 191217in Fritz, P. and Fontes, J. C., eds. Handbook of environmental isotope geochemistry. Elsevier.Google Scholar
Langseth, M. G., and Moore, J. C. 1990. Introduction to special section on the role of fluids in sediment accretion, deformation, diagenesis, and metamorphism in subduction zones. Journal of Geophysical Research 95:87378741.CrossRefGoogle Scholar
Lawton, J. E. 1956. Geology of the north half of the Morgan Valley quadrangle and the south half of the Wilbur Springs quadrangle, California. Ph.D. dissertation. Stanford University, Calif.Google Scholar
Lemoine, M., Arnaud-Vanneau, A., Arnaud, H., Létolle, R., Mevel, C., and Thieuloy, J.-P. 1982. Indices possibles de paléo-hydrothermalisme marin dans le Jurassique et le Crétacé des Alpes occidentals (océan téthysien et sa marge continental européenne): essai d'inventaire. Bulletin de la Société géologique de France, ser. 7, 24:641647.CrossRefGoogle Scholar
Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M., de Graciansky, P. C., Rudkiewicz, J. L., Megard-Galli, J., and Tricart, P. 1986. The continental margin of the Mesozoic Tethys in the western Alps. Marine and Petroleum Geology 3:179199.CrossRefGoogle Scholar
Lutz, R. A., and Kennish, M. J. 1993. Ecology of deep-sea hydrothermal vent communities: a review. Reviews in Geophysics 31:211242.CrossRefGoogle Scholar
Mascle, G., Arnaud, H., Dardeau, G., Debelmas, J., Delpech, P.-Y., Dubois, P., Gidon, M., de Graciansky, P.-C., Kerckhove, C., and Lemoine, M. 1988. Salt tectonics, Tethyan rifting and Alpine folding in the French Alps. Bulletin de la Société géologique de France, ser. 8, 4:747758.CrossRefGoogle Scholar
Macovei, G. 1927. Aperçu géologique sur les Carpathes orientales. Guides des excursions, 2-e Réunion de l'Association Carpathique. Bucuresti.Google Scholar
Macovei, G., and Atanasiu, I. 1934. L'évolution géologique de la Roumanie. Crétacé. Annuaire du Comité géologique 16:1326. Bucuresti.Google Scholar
McLean, J. H. 1981. The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation. Malacologia 21:291326.Google Scholar
Moore, D. W., Young, L. E., Modene, J. S., and Plahuta, J. T. 1986. Geologic setting and genesis of the Red Dog Zinc-Lead-Silver deposit, western Brooks Range, Alaska. Economic Geology 81:16961727.CrossRefGoogle Scholar
Moxon, I. W. 1990. Stratigraphy and structure of Upper Jurassic-Lower Cretaceous strata, Sacramento Valley. Pp. 529in Ingersoll, R. V. and Nilsen, T. H., eds. Sacramento Valley symposium and guidebook. Pacific Section Society of Economic Paleontologist and Mineralogist 65.Google Scholar
Newman, W. A. 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? Pp. 231242in Jones, 1985.Google Scholar
Noll, J. H., Dutro, J. T. Jr., and Beus, S. S. 1984. A new species of the Late Devonian (Famennian) brachiopod Dzieduszyckia from Sonora, Mexico. Journal of Paleontology 58:14121421.Google Scholar
Onescu, N. 1943. Région de Piatra Craiului-Bucegi. Ètude géologique. Annuaire de L'Institut géologique de Roumanie (Bucuresti) 22:1124.Google Scholar
Orange, D., Greene, H. G., McHugh, C., Ryan, W. B. F., Reed, D., Barry, J., Kochevar, R., and Connor, J. 1993. Fluid expulsion along fault zones and mud volcanoes in Monterey Bay. EOS Transactions, American Geophysical Union 74:242, suppl.Google Scholar
Ortiz-Herńandez, L. E., and Martínez-Reyes, J. 1993. Evidence of Cretaceous hot-spot intra-plate magmatism in the central segment of the Guerrero terrane. Proceedings of the First Circum-Pacific and Circum-Atlantic Terrane Conference:110112.Google Scholar
Perthuisot, V., and Guilhaumou, N. 1983. Les diapirs triasiques du domaine vocontien: phases diapiriques et hydrothermales en domaine périalpin. Bulletin de la Société géologique de France, ser. 7, 25:397410.CrossRefGoogle Scholar
Pique, A., and Michard, A. 1989. Moroccan Hercynides: a synopsis. xThe Paleozoic sedimentary and tectonic evolution at the northern margin of West Africa. The Paleozoic sedAmerican Journal of Science 289:286330.Google Scholar
Poole, F. G. 1988. Stratiform barite in Paleozoic rocks of the Western United States. Pp. 309319in Zachrisson, E., ed. Seventh International Association on the Genesis of Ore Deposits Symposium Proceedings, Lulea, Sweden. Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung (Nägle u. Obermiller).Google Scholar
Poole, F. G., Murchey, B. L., and Stewart, J. H. 1983. Bedded barite deposits of middle and late Paleozoic age in central Sonora, Mexico. Geological Society of America Abstracts with Program 15:299.Google Scholar
Poole, F. G., Madrid, R. J., and Oliva-Becerril, J. F. 1991. Geological setting and origin of stratiform barite in central Sonora, Mexico, Pp. 517522in Raines, G. L., Lisle, R. E., Schafer, R. W., and Wilkinson, W. H., eds. Geology and ore deposits of the Great Basin (Vol. 1). Reno, NV, Geological Society of Nevada.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Remes, M. 1903. Rhynchonella peregrina bei Freiberg in Mähren. Verhandlungen der k. k. geologischen Reichsanstalt nr. 11:223225.Google Scholar
Renngarten, V. 1924. O Kavkazkikh Peregrinellae. Izvestiia Geologicheskogo Komiteta, Leningrad 42:112128.Google Scholar
Rhodes, M. C., and Thompson, R. J. 1993. Comparative physiology of suspension-feeding in living brachiopods and bivalves: evolutionary implications. Paleobiology 19:322334.CrossRefGoogle Scholar
Ritger, S., Carson, B., and Suess, E. 1987. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along Oregon/Washington margin. Geological Society of America Bulletin 98:147156.2.0.CO;2>CrossRefGoogle Scholar
Rolin, Y., Gaillard, C., and Roux, M. 1990. Ecologie des pseudo-biohermes des Terres Noires jurassiques liés à des paléo-sources sous-marines. Le site oxfordien de Beauvoisin (Drome, Bassin du Sud-Est, France). Palaeogeography, Palaeoclimatology, Palaeoecology 80:79105.CrossRefGoogle Scholar
Roman, F. 1897. Sur la stratigraphie et la paléontologie du Bas-Languedoc (Montpellier). Annales de l'Universite de Lyon. Paris.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchinson University Library, London.Google Scholar
Silberling, N. J., Schoellhamer, J. E., Gray, C. H. Jr., and Imlay, R. W. 1961. Upper Jurassic fossils from the Bedford Canyon Formation, southern California. Bulletin of the American Association of Petroleum Geologists 45:17461748.Google Scholar
Smith, A. G., and Briden, J. C. 1978. Mesozoic and Cenozoic paleocontinental maps. Cambridge University Press.Google Scholar
Smirnova, T. N. 1972. Rannemelovye brakhipody Kryma i Severnogo Kavkaza. Moskva, b “Nauka.”Google Scholar
Somero, G. N., Childress, J. J., and Anderson, A. E. 1989. Transport, metabolism, and detoxification of hydrogen sulfide in animals from sulfide-rich marine environments. Reviews in Aquatic Sciences 1:591614.Google Scholar
Squires, R. L., and Goedert, J. L. 1991. New Late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. Journal of Paleontology 65:412416.CrossRefGoogle Scholar
Stanton, T. W. 1895. Contributions to the Cretaceous Paleontology of the Pacific coast: the fauna of the Knoxville beds. United States Geological Survey Bulletin 133.Google Scholar
Sun, D. 1986. Discovery of Early Cretaceous Peregrinella (Brachiopoda) in Xizang (Tibet) and its significance. Palaeontologia Cathayana 2:211227.Google Scholar
Termier, H. 1938. Sur l'existence des Halorella au Dévonian supérior. Comptes Rendus sommaire des seances de la Société géologique de France (Paris) 7:108.Google Scholar
Termier, H., and Termier, G. 1949. Sur les genres Halorella et Dzieduszyckia. Notes et Mémoires du Service géologique du Maroc 74:113115.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods. Pp. 110126in Dutro, J. T. and Boardman, R. S., eds. Lophophorates, notes for a short course. University of Tennessee Studies in Geology 5. Knoxville, Tenn.CrossRefGoogle Scholar
Thayer, C. W. 1985. Brachiopods versus mussels: competition, predation, and palatability. Science 228:15271528.CrossRefGoogle ScholarPubMed
Thayer, C. W. 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology 12:161174.CrossRefGoogle Scholar
Thieuloy, J.-P. 1972. Biostratigraphie des lentilles a peregrinelles (Brachiopoda) de l'Hauterivien de Rottier (Drome, France). Geobios 5:553.CrossRefGoogle Scholar
Trümpy, R. 1956. Notizen zur mesozoischen Fauna der innerschweizerschen Klippen. Eclogae Geologicae Helvetiae 49:573591.Google Scholar
Toula, F. 1911. Uber Rhynchonella (Peregrinella Oehlert) multicarinata Lam. sp., 1819 = Terebratula peregrina L. V. Buch, 1838 von Zajzon bei Kronstadt. Kaiserlich-Knigliche Geologische Reichsanstalt, Abhandlungen 20:2735. Wien.Google Scholar
Tunnicliffe, V. 1992. The nature and origin of the modern hydrothermal vent fauna. Palaios 7:338350.CrossRefGoogle Scholar
Tunnicliffe, V., and Wilson, K. 1988. Brachiopod populations: distribution in fjords of British Columbia (Canada) and tolerance of low oxygen conditions. Marine Ecology Progress Series 47:117128.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution 37:10521061.CrossRefGoogle ScholarPubMed
Van Dover, C. L. 1990. Biogeography of hydrothermal vent communities along seafloor spreading centers. Trends in Ecology and Evolution 5:242246.CrossRefGoogle ScholarPubMed
Viola, C., and Cassetti, N. 1893. Contributo alia geologia del Gargano. Bulletino Comitato geologico italina 4:101129. Roma.Google Scholar
von Bitter, P. H., Scott, S. D., and Schenk, P. E. 1990. Early Carboniferous low-temperature hydrothermal vent communities from Newfoundland. Nature (London) 344:145148.CrossRefGoogle Scholar
von Bitter, P. H., Scott, S. D., and Schenk, P. E. 1992. Chemosynthesis: an alternate hypothesis for Carboniferous biotas in bryozoan/microbial mounds, Newfoundland, Canada. Palaios 7:466484.CrossRefGoogle Scholar