Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T15:31:25.890Z Has data issue: false hasContentIssue false

Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods

Published online by Cambridge University Press:  08 April 2016

Paul G. Harnik
Affiliation:
Department of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17604, U.S.A. E-mail: paul.harnik@fandm.edu
Paul C. Fitzgerald
Affiliation:
Department of Biology, Northern Virginia Community College, Annandale, Virginia 22003, U.S.A. E-mail: pfitzgerald@nvcc.edu
Jonathan L. Payne
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A. E-mail: jlpayne@stanford.edu
Sandra J. Carlson
Affiliation:
Department of Earth and Planetary Sciences, University of California, Davis, California 95616, U.S.A. E-mail: sjcarlson@ucdavis.edu

Abstract

Determining which biological traits affect taxonomic durations is critical for explaining macroevolutionary patterns. Two approaches are commonly used to investigate the associations between traits and durations and/or extinction and origination rates: analyses of taxonomic occurrence patterns in the fossil record and comparative phylogenetic analyses, predominantly of extant taxa. By capitalizing upon the empirical record of past extinctions, paleontological data avoid some of the limitations of existing methods for inferring extinction and origination rates from molecular phylogenies. However, most paleontological studies of extinction selectivity have ignored phylogenetic relationships because there is a dearth of phylogenetic hypotheses for diverse non-vertebrate higher taxa in the fossil record. This omission inflates the degrees of freedom in statistical analyses and leaves open the possibility that observed associations are indirect, reflecting shared evolutionary history rather than the direct influence of particular traits on durations. Here we investigate global patterns of extinction selectivity in Devonian terebratulide brachiopods and compare the results of taxonomic vs. phylogenetic approaches. Regression models that assume independence among taxa provide support for a positive association between geographic range size and genus duration but do not indicate an association between body size and genus duration. Brownian motion models of trait evolution identify significant similarities in body size, range size, and duration among closely related terebratulide genera. We use phylogenetic regression to account for shared evolutionary history and find support for a significant positive association between range size and duration among terebratulides that is also phylogenetically structured. The estimated range size–duration relationship is moderately weaker in the phylogenetic analysis due to the down-weighting of closely related genera that were both broadly distributed and long lived; however, this change in slope is not statistically significant. These results provide evidence for the phylogenetic conservatism of organismal and emergent traits, yet also the general phylogenetic independence of the relationship between range size and duration.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Nürnberg, S., and Kiessling, W. 2012. Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology 38:187204.Google Scholar
Anderson, S. C., Farmer, R. G., Ferretti, F., Houde, A. L. S., and Hutchings, J. A. 2011. Correlates of vertebrate extinction risk in Canada. Bioscience 61:538549.Google Scholar
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.Google Scholar
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.Google Scholar
Bennett, P. M., Owens, I. P. F., Nussey, D., Garnett, S. T., and Crowley, G. M. 2005. Mechanisms of extinction in birds: phylogeny, ecology and threats. Pp. 317336inPurvis, A., Gittleman, J. L., and Brooks, T., eds. Phylogeny and conservation. Cambridge University Press, Cambridge.Google Scholar
Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728732.Google Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.Google Scholar
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, C. D. L., and Purvis, A. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:12391241.Google Scholar
Cardillo, M., Mace, G. M., Gittleman, J. L., Jones, K. E., Bielby, J., and Purvis, A. 2008. The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society of London B 275:14411448.Google Scholar
Carlson, S. J., and Fitzgerald, P. C. 2008a. Comparing extinction selectivity among terebratulide brachiopod clades: using phylogenetic methods to test macroevolutionary hypotheses. Geological Society of America Abstracts with Programs 40:340345.Google Scholar
Carlson, S. J., 2008b. Sampling taxa, estimating phylogeny and inferring macroevolution: an example from Devonian terebratulide brachiopods. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98:311325.Google Scholar
Carlson, S. J., Fitzgerald, P. C., Leighton, L. R., and Kaplan, P. A. 2004. Examining patterns of taxonomic and phylogenetic extinction selectivity in Paleozoic terebratulide brachiopods. Geological Society of America Abstracts with Programs 36:525.Google Scholar
Chatterton, B. D. E. 1973. Brachiopods of the Murrumbidgee Group, Taemas, New South Wales. Australia Bureau of Mineral Resources, Geology and Geophysics, Bulletin 137:1146.Google Scholar
Cloud, P. E. Jr. 1942. Terebratuloid Brachiopoda of the Silurian and Devonian. Geological Society of America Special Paper 38.Google Scholar
Condamine, F. L., Rolland, J., and Morlon, H. 2013. Macroevolutionary perspectives to environmental change. Ecology Letters 16:7285.Google Scholar
Cooper, N., Bielby, J., Thomas, G. H., and Purvis, A. 2008. Macroecology and extinction risk correlates of frogs. Global Ecology and Biogeography 17:211221.Google Scholar
Coyne, J. A., and Orr, H. A. 2004. Speciation. Sinauer, Sunderland, MA.Google Scholar
Crampton, J. S., Cooper, R. A., Beu, A. G., Foote, M., and Marshall, B. A. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204223.Google Scholar
Curry, G. B., and Brunton, C. H. C. 2007. Stratigraphic distribution of brachiopods. Pp. 29013081inSelden, P. A., ed. Treatise on invertebrate paleontology, Part H, Brachiopoda, revised, Vol. 6. Geological Society of America, Boulder, CO, and University of Kansas Lawrence.Google Scholar
Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H., and Ceballos, G. 2009. Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences USA 106:1070210705.Google Scholar
Dietl, G. P., and Flessa, K. W. 2011. Conservation paleobiology: putting the dead to work. Trends in Ecology and Evolution 26:3037.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Finnegan, S., Wang, S. C., Boyer, A. G., Clapham, M. E., Finkel, Z. V., Kosnik, M. A., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Lockwood, R., Payne, J. L., Smith, F. A., Spaeth, P. A., and Stempien, J. 2009. No general relationship between body size and extinctoin risk in the fossil record of marine invertebrates and phytoplankton. Geological Society of America Abstracts with Programs 41:506.Google Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.Google Scholar
Fitzgerald, P. C. 2006. Latitudinal diversity gradients, morphological variability, and phylogenetic relationships of Paleozoic Terebratulide (Brachiopoda) genera. Ph.D. dissertation. Department of Geology, University of California, Davis.Google Scholar
Fitzgerald, P. C., and Carlson, S. J. 2006. Examining the latitudinal diversity gradient in Paleozoic terebratulide brachiopods: should singleton data be removed? Paleobiology 32:367386.Google Scholar
Fitzgerald, P. C., 2007. Testing hypotheses of survivorship when pseudoextinction gets in the way: terebratulide genera at the Permo-Triassic boundary. Geological Society of America Abstracts with Programs 39:370.Google Scholar
Foote, M. 2007. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.Google Scholar
Foote, M., and Miller, A. I. 2013. Determinants of early survival in marine animal genera. Paleobiology 39:171192.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.Google Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M. D. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712726.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.Google Scholar
Goldberg, E. E., and Igić, B. 2012. Tempo and mode in plant breeding system evolution. Evolution 66:37013709.Google Scholar
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.Google Scholar
Green, W. A., Hunt, G., Wing, S. L., and DiMichele, W. A. 2011. Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology 37:7291.Google Scholar
Hansen, T. F., and Bartoszek, K. 2012. Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Systematic Biology 61:413425.Google Scholar
Hardy, C., Fara, E., Laffont, R., Dommergues, J.-L., Meister, C., and Neige, P. 2012. Deep-time phylogenetic clustering of extinctions in an evolutionarily dynamic clade (Early Jurassic Ammonites). PLoS ONE 7:e37977.Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129131.Google Scholar
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.Google Scholar
Harnik, P. G., and Lockwood, R. 2011. Part N, Revised, Volume 1, Chapter 24: Extinction in the marine Bivalvia. Treatise Online 29:124.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O'Dea, A., Pandolfi, J. M., Simpson, C., and Tittensor, D. P. 2012a. Extinctions in ancient and modern seas. Trends in Ecology and Evolution 27:608617.Google Scholar
Harnik, P. G., Simpson, C., and Payne, J. L. 2012b. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.Google Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
Heim, N. A., and Peters, S. E. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.Google Scholar
Hopkins, M. J. 2011. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.Google Scholar
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.Google Scholar
Hunt, G., Roy, K., and Jablonski, D. 2005. Species-level heritability reaffirmed: a comment on “On the heritability of geographic range sizes.” American Naturalist 166:129135.Google Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.Google Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 2008a. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.Google Scholar
Jablonski, D. 2008b. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39:501524.Google Scholar
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2003. Evolutionary macroecology and the fossil record. Pp. 368390inBlackburn, T. M. and Gaston, K. J., eds. Macroecology: concepts and consequences. Blackwell Science, Oxford.Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., and Mooers, A. O. 2012. The global diversity of birds in space and time. Nature 491:444448.Google Scholar
Jones, K. E., Purvis, A., and Gittleman, J. L. 2003. Biological correlates of extinction risk in bats. American Naturalist 161:601614.Google Scholar
Jones, K. E., Sechrest, W., and Gittleman, J. L. 2005. Age and area revisited: identifying global patterns and implications for conservation. Pp. 141165inPurvis, A., Gittleman, J. L., and Brooks, T., eds. Phylogeny and conservation. Cambridge University Press, Cambridge.Google Scholar
Kaesler, R. L., ed. 2000. Brachiopoda 5, Rhynconelliformea (part). Part H ofKaesler, R. L., ed. Treatise on Invertebrate Paleontology. Geological Society of America, Boulder, CO, and University of Kansas, Lawrence.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity on Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24:155176.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.Google Scholar
Kolbe, S. E., Lockwood, R., and Hunt, G. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355368.Google Scholar
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588597.Google Scholar
Laurin, M., Canoville, A., and Quilhac, A. 2009. Use of paleontological and molecular data in supertrees for comparative studies: the example of lissamphibian femoral microanatomy. Journal of Anatomy 215:110123.Google Scholar
Lee, M. S. Y., Cau, A., Naish, D., and Dyke, G. J. 2014. Morphological clocks in palaeontology, and a mid-Cretaceous origin of crown Aves. Systematic Biology 63:442449.Google Scholar
Lee, T. M., and Jetz, W. 2010. Unravelling the structure of species extinction risk for predictive conservation science. Proceedings of the Royal Society of London B 278:13291338.Google Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.Google Scholar
Liow, L. H., and Stenseth, N. C. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.Google Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., and Stenseth, N. C. 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:60976102.Google Scholar
Liow, L. H., Skaug, H. J., Ergon, T., and Schweder, T. 2010. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36:224252.Google Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.Google Scholar
Lockwood, R., and Barbour Wood, S. L. . 2007. Exploring the link between rarity and molluscan extinction in the Cenozoic record of the U.S. Coastal Plain. Geological Society of America Abstracts with Programs 39:369.Google Scholar
Lyons, S. K., Smith, F. A., and Brown, J. H. 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research 6:339358.Google Scholar
Maliska, M. E., Pennell, M. W., and Swalla, B. J. 2013. Developmental mode influences diversification in ascidians. Biology Letters 9:20130068.Google Scholar
McClain, C. R., Boyer, A. G., and Rosenberg, G. 2006. The island rule and the evolution of body size in the deep sea. Journal of Biogeography 33:15781584.Google Scholar
Meldahl, K. H. 1990. Sampling, species abundance, and the stratigraphic signature of mass extinction: a test using Holocene tidal flat mollusks. Geology 18:890893.Google Scholar
Myers, C. E., MacKenzie, R. A., and Lieberman, B. S. 2012. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135148.Google Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118inNovacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Novack-Gottshall, P. M. 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163173.Google Scholar
Nürnberg, S., and Aberhan, M. 2013. Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360372.Google Scholar
Ogg, J. G., Ogg, G., and Gradstein, F. M. 2009. The concise geologic time scale. Cambridge University Press, Cambridge.Google Scholar
Pagel, M. D. 1999. Inferring the historical patterns of biological evolution. Nature 301:877884.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Payne, J. L., Truebe, S., Nützel, A., and Chang, E. T. 2011. Local and global abundance associated with extinction risk in late Paleozoic and early Mesozoic gastropods. Paleobiology 37:616632.Google Scholar
Peck, L. S. 1993. The tissues of articulate brachiopods and their value to predators. Philosophical Transactions of the Royal Society of London B 339:1732.Google Scholar
Peck, L. S., and Holmes, L. J. 1990. Seasonal and ontogenetic changes in tissue size in the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology 134:2536.Google Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.Google Scholar
Price, S. A., Hopkins, S. S. B., Smith, K. K., and Roth, V. L. 2012. Tempo of trophic evolution and its impact on mammalian diversification. Proceedings of the National Academy of Sciences USA 109:70087012.Google Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.Google Scholar
Purvis, A., Cardillo, M., Grenyer, R., and Collen, B. 2005. Correlates of extinction risk: phylogeny, biology, threat and scale. Pp. 295316inPurvis, A., Gittleman, J. L., and Brooks, T., eds. Phylogeny and conservation. Cambridge University Press, Cambridge.Google Scholar
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L. 2012. Within-and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38:627643.Google Scholar
Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1:319329.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interaction between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.Google Scholar
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.Google Scholar
Roy, K., Hunt, G., and Jablonski, D. 2009a. Phylogenetic conservatism of extinctions in marine bivalves. Science 325:733737.Google Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z., and Valentine, J. W. 2009b. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London B 276:14851493.Google Scholar
Safi, K., Meiri, S., and Jones, K. E. 2013. Evolution of body size in bats. Pp. 95115inSmith, F. A. and Lyons, S. K., eds. Animal body size: linking pattern and process across space, time, and taxonomic group. University of Chicago Press, Chicago.Google Scholar
Schmachtenberg, W. F. 2011. Paleolongitudinal estimates for paleocontinents derived from interplate distances based on Late Ordovician bivalves. Paleobiology 37:438444.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M. 1979. Paleozoic base maps. Journal of Geology 87:217277.Google Scholar
Shumway, S. E. 1982. Oxygen consumption in brachiopods and the possible role of punctae. Journal of Experimental Marine Biology and Ecology 58:207220.Google Scholar
Signor, P. W. III, and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. InSilver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the earth. Geological Society of America Special Paper 190:291296.Google Scholar
Simpson, C., and Harnik, P. G. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record. Blackwell Scientific, Oxford.Google Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. M., and Hadly, E. A. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, New York.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Taylor, C. N., and Gotelli, N. J. 1994. The macroecology of Cyprinella: correlates of phylogeny, body size, and geographic range. American Naturalist 144:549569.Google Scholar
Tietje, M., and Kiessling, W. 2013. Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs. Journal of Biogeography 40:790799.Google Scholar
Zaffos, A., and Holland, S. M. 2012. Abundance and extinction in Ordovician–Silurian brachiopods, Cincinnati Arch, Kentucky and Ohio. Paleobiology 38:278291.Google Scholar