Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T20:10:27.032Z Has data issue: false hasContentIssue false

Post–Permo-Triassic terrestrial vertebrate recovery: southwestern United States

Published online by Cambridge University Press:  08 February 2016

David A. Tarailo
Affiliation:
Department of Geosciences, University of Rhode Island, Kingston, Rhode Island 02881, United States of America. E-mail: datarailo@yahoo.com
David E. Fastovsky
Affiliation:
Department of Geosciences, University of Rhode Island, Kingston, Rhode Island 02881, United States of America. E-mail: datarailo@yahoo.com

Abstract

Recovery of marine biodiversity following the Permo-Triassic extinction is thought to have been delayed relative to other mass extinctions. Terrestrial vertebrate biodiversity is said to have taken as much as 15 Myr longer to recover than the marine. The present study tests, at the scale of an individual fossil community, whether a disparity in biodiversity existed in the American Southwest, between the Moenkopi Formation, containing an early Middle Triassic (Anisian) terrestrial tetrapod fauna, and the Chinle Formation, containing a successor Late Triassic (Norian) tetrapod fauna. Taking Chinle faunal biodiversity to represent full biotic recovery, comparison of taxonomic and guild diversity of faunas from similar depositional and taphonomic environments in these two formations allowed us to assess the possibility of incipient terrestrial recovery of biodiversity in the Anisian.

Comparisons were made between the Holbrook Member fauna of the Moenkopi, a unit best characterized as a low-sinuosity medium- to coarse-grained fluvial deposit, and each of four Chinle stratigraphic units, representing fluvial settings from sandy low-sinuosity to muddy high-sinuosity. Three metrics were applied: generic and familial taxonomic diversity and guild diversity; these were compared by rarefaction. Simpson and Shannon diversity metrics augmented the analysis. Units of extraordinary preservation in the Chinle—the so-called blue layers—were removed from the analysis. In all tests the biodiversity of the Holbrook Member fauna is within the variation seen in Chinle faunas.

If the results of our study represent global conditions, they suggest that by at least early Anisian time (∼6 Myr after the P/T extinction) biodiversity had reached levels comparable to those seen in the Late Triassic. This potentially brings the terrestrial vertebrate recovery in line with the 4–8 Myr it took for recovery in the marine realm.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48:107118.CrossRefGoogle ScholarPubMed
Bazard, D. R., and Butler, R. F. 1991. Paleomagnetism of the Chinle and Kayenta formations, New Mexico and Arizona. Journal of Geophysical Research 96:98479871.CrossRefGoogle Scholar
Benton, M. J., Tverdokhlebov, V. P., and Surkov, M. V. 2004. Ecosystem remodeling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432:97100.CrossRefGoogle ScholarPubMed
Bilodeau, W. L. 1986. The Mesozoic Mogollon Highlands, Arizona: an Early Cretaceous rift shoulder. Journal of Geology 94:724735.CrossRefGoogle Scholar
Blakey, R. C., and Gubitosa, R. 1983. Late Triassic paleogeography and depositional history of the Chinle Formation, southern Utah and northern Arizona. Pp. 5776inReynolds, M. W. and Dolly, E. D., eds. Mesozoic paleogeography of the west–central United States. Rocky Mountain Section, SEPM, Denver.Google Scholar
Blakey, R. C., Basham, E. L., and Cook, M. J. 1993. Early and Middle Triassic paleogeography of the Colorado Plateau and vicinity. Pp. 1326inMorales, M., ed. Aspects of Mesozoic geology and paleontology of the Colorado Plateau. Museum of Northern Arizona Bulletin 59:1326Google Scholar
Bottjer, D. J. 2001. Biotic recovery from mass extinctions. Pp. 202206inBriggs, D. E. G. and Crowther, P. R., eds. Palaeobiology II. Blackwell Science, Malden, Mass.CrossRefGoogle Scholar
Bottjer, D. J., Clapham, M. E., Fraiser, M. L., and Powers, C. M. 2008. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today 18 (9):410.CrossRefGoogle Scholar
Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., and Norell, M. A. 2010. The origin and early radiation of dinosaurs. Earth–Science Reviews 101:68100.CrossRefGoogle Scholar
Brusatte, S. L., Benton, M. J., Lloyd, G. T., Ruta, M., and Wang, S. C. 2011a. Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101:367382.CrossRefGoogle Scholar
Brusatte, S. L., Niedziedzki, G., and Butler, R. J. 2011b. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic. Proceedings of the Royal Society of London B 278:11071113.Google ScholarPubMed
Butler, R. J., Brusatte, S. L., Reich, M., Nesbitt, S. J., Schoch, R. R., and Hornung, J. J. 2011. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS One 6 (10).CrossRefGoogle ScholarPubMed
Pielou, E. C. 1969. An introduction to mathematical ecology. Wiley–Interscience, New York.Google Scholar
Carr, T. R., and Paull, R. K. 1983. Early Triassic stratigraphy and paleogeography of the Cordilleran Miogeocline. Pp. 3955inReynolds, M. W. and Dilly, E. D., eds. Mesozoic paleogeography of the west–central United States. Rocky Mountain Section, SEPM, Denver.Google Scholar
Christensen, H. 2011. Mammalian community change after the K/T extinction in North America. Geological Society of America Abstracts with Programs 43 (5):543.Google Scholar
Cuny, G., Gauffre, F., and Hunt, A. 1999. First discovery of a cynodont from the Moenkopi Formation (Middle Triassic) of northeastern Arizona. Oryctos 2:1720.Google Scholar
Dickinson, W. R. and Gehrels, G. E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters 288:115125.CrossRefGoogle Scholar
Dubiel, R. F., and Hasiotis, S. T. 2011. Deposystems, paleosols, and climatic variability in a continental system: the Upper Triassic Chinle Formation, Colorado Plateau, U.S.A. InDavidson, S. K., Leleu, S., and North, C. P., eds. From river to rock record: the preservation of fluvial sediments and their subsequent interpretation. SEPM Special Publication 97:393421.Google Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology 20:245258.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1):19.Google Scholar
Heck, K. L. J., van Belle, G., and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:14591461.CrossRefGoogle Scholar
Heckert, A. B., and Lucas, S. G. 2006. Micro- and small vertebrate biostratigraphy and biochronology of the Upper Triassic Chinle Group, southwestern USA. InHarris, J. D., Lucas, S. G., Spielmann, J. A., Lockley, M. G., Milner, A. R. C., and Kirkland, J. I., eds. The Triassic–Jurassic terrestrial transition. New Mexico Museum of Natural History and Science Bulletin 37:94104.Google Scholar
Heckert, A. B., Lucas, S. G., and Hunt, A. P. 2005. Triassic vertebrate fossils in Arizona. InHeckert, A. B. and Lucas, S. G., eds. Vertebrate paleontology in Arizona. New Mexico Museum of Natural History and Science Bulletin 29:1644.Google Scholar
Heckert, A. B., Spielmann, J. A., Lucas, S. G., and Hunt, A. P. 2007. Biostratigraphic utility of the Upper Triassic aetosaur Tecovasuchus (Archosauria: Stagonolepididae), an index taxon of St. Johnsian (Adamanian: Late Carnian) time. InLucas, S. G. and Spielmann, J. A., eds. The global Triassic. New Mexico Museum of Natural History and Science Bulletin 41:5157.Google Scholar
Hunt, A. P., Santucci, V. L., and Newell, A. J. 1995. Late Triassic vertebrate taphonomy at Petrified Forest National Park. Pp. 97100inSantucci, V. L. and McClelland, L., eds. National Park Service paleontological research. National Park Service Technical Report NPS/NRPO/NRTR-95/16.Google Scholar
Irmis, R. B., and Whiteside, J. H. 2011. Delayed recovery of non–marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proceedings of the Royal Society of London B 279 (1732):13101318.Google ScholarPubMed
Irmis, R. B., Mundil, R., Martz, J. W., and Parker, W. G. 2011. High–resolution U-Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support diachronous rise of dinosaurs. Earth and Planetary Science Letters 309:258267.CrossRefGoogle Scholar
Jones, M. M. 2000. Paleosols of the Carnian–Norian boundary interval (Late Triassic), Petrified Forest National Park, Arizona. M.S. thesis. University of Rhode Island, Kingston.Google Scholar
Kozur, H. W., and Weems, R. E. 2010. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. InLucas, S. G., ed. The Triassic timescale. Geological Society of London Special Publication 334:315417CrossRefGoogle Scholar
Kraus, M. J., and Middleton, L. T. 1987. Dissected paleotopology and base–level changes in a Triassic fluvial sequence. Geology 15:1821.2.0.CO;2>CrossRefGoogle Scholar
Lehrmann, D. J., Ramezani, J., Bowring, S. A., Martin, M. W., Montgomery, P., Enos, P., Payne, J. L., Orchard, M. J., Hongmei, W., and Jiayong, W. 2006. Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34:10531056.CrossRefGoogle Scholar
Long, R. A., and Murry, P. A. 1995. Late Triassic (Carnian and Norian) tetrapods from the southwestern United States. New Mexico Museum of Natural History and Science Bulletin 4:1254.Google Scholar
Loughney, K., Fastovsky, D., and Parker, W. 2011. Vertebrate fossil preservation in blue paleosols from Petrified Forest National Park, AZ, and its implications for vertebrate biostratigraphy in the Chinle Formation. Palaios 26:700719.CrossRefGoogle Scholar
Lucas, S. G. 1998. Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 143:347384.CrossRefGoogle Scholar
Lucas, S. G., and Schoch, R. R. 2002. Triassic temnospondyl biostratigraphy, biochronology and correlation of the German Buntsandstein and North American Moenkopi Formation. Lethaia 35:97106.CrossRefGoogle Scholar
Lucas, S. G., Heckert, A. B., and Hunt, A. P. 2001. Triassic stratigraphy, biostratigraphy, and correlation in east–central New Mexico. New Mexico Geological Society Guidebook 52:85102.Google Scholar
Maas, M. C., and Kraus, D. W. 1994. Mammalian turnover and community structure in the Paleocene of North America. Historical Biology 8:91128.CrossRefGoogle Scholar
Magurran, A. E. 2004. Measuring biological diversity. Blackwell, Cornwall.Google Scholar
McKee, E. D. 1954. Stratigraphy and history of the Moenkopi Formation of Triassic age. Geological Society of America Memoir 61. Geological Society of America, Baltimore.Google Scholar
Miall, A. D. 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22:261308.CrossRefGoogle Scholar
Morales, M. 1987. Terrestrial fauna and flora from the Triassic Moenkopi Formation of the southwestern United States. Journal of the Arizona–Nevada Academy of Science 22:119.Google Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed system zircons. Science 305:17601763.CrossRefGoogle ScholarPubMed
Nesbitt, S. J. 2000. A preliminary report on new vertebrate fossil sites, including a microsite from the Holbrook Member of the Moenkopi Formation, Holbrook, Arizona. InMcCord, R. D. and Boaz, D., eds. Southwest Paleontological Symposium—Proceedings 2000. Mesa Southwest Museum Bulletin 7:1730.Google Scholar
Nesbitt, S. J. 2001. An update on fossil reptile material from the Upper Moenkopi Formation, Holbrook Member (Middle Triassic), northern Arizona. InMcCord, R. D. and Boaz, D., eds. Western Association of Vertebrate Paleontologists and Southwest Paleontological Symposium—Proceedings 2001. Mesa Southwest Museum Bulletin 8:37.Google Scholar
Nesbitt, S. J. 2005a. The tetrapod fauna of the Moenkopi Formation in northern Arizona. InNesbitt, S. J., Parker, W. G., and Irmis, R. B., eds. Guidebook to the Triassic formations of the Colorado Plateau in northern Arizona: geology, paleontology, and history. Mesa Southwest Museum Bulletin 9:2532.Google Scholar
Nesbitt, S. J. 2005b. Stratigraphy and tetrapod fauna of major quarries in the Moenkopi Formation (Early-Middle Triassic) along the Little Colorado River of northern Arizona. InMcCord, R. D., ed. Vertebrate paleontology of Arizona. Mesa Southwest Museum Bulletin 11:1833.Google Scholar
Nesbitt, S. J. 2005c. The Moenkopi Formation along the Little Colorado River in eastern Arizona. InNesbitt, S. J., Parker, W. G., and Irmis, R. B., eds. Guidebook to the Triassic formations of the Colorado Plateau in northern Arizona: geology, paleontology, and history. Mesa Southwest Museum Bulletin 9:1323.Google Scholar
Nesbitt, S. J. 2011. The early evolution of archosaurs: relationships and origins of major clades. Bulletin of the American Museum of Natural History 253:1292.CrossRefGoogle Scholar
Nesbitt, S. J., and Angielczyk, K. D. 2002. New evidence of large dicynodonts in the upper Moenkopi Formation (Middle Triassic) of northern Arizona. PaleoBios 22 (2):1017.Google Scholar
Nesbitt, S. J., and Whatley, R. L. 2004. The first discovery of a rhynchosaur from the upper Moenkopi Formation (Middle Triassic) of northern Arizona. PaleoBios 24 (3):110.Google Scholar
Nesbitt, S. J., Irmis, R. B., and Parker, W. G. 2007. A critical re-evaluation of the Late Triassic dinosaur taxa of North America. Journal of Systematic Paleontology 5:209243.CrossRefGoogle Scholar
Nesbitt, S. J., Liu, J., and Li, C. 2010. A sail–backed suchian from the Heshanggou Formation (Early Triassic: Olenekian) of China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101:271284.CrossRefGoogle Scholar
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243:463475.CrossRefGoogle Scholar
Parker, W. G. 2002. Correlation of locality numbers for vertebrate fossil sites in Petrified Forest National Park, Arizona. InHeckert, A. B. and Lucas, S. G., eds. Upper Triassic stratigraphy and paleontology. New Mexico Museum of Natural History and Science Bulletin 21:3742.Google Scholar
Parker, W. G. 2005. Faunal review of the Upper Triassic Chinle Formation of Arizona. InMcCord, R. D., ed. Vertebrate paleontology of Arizona. Mesa Southwest Museum Bulletin 11:3454.Google Scholar
Parker, W. G. 2006. The stratigraphic distribution of major fossil localities in Petrified Forest National Park, Arizona. Pp. 4661in Parker et al. 2006b.Google Scholar
Parker, W. G., and Martz, J. W. 2011. The Late Triassic (Norian) Adamanian–Revueltian tetrapod faunal transition in the Chinle Formation of Petrified Forest National Park, Arizona. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101:231260.CrossRefGoogle Scholar
Parker, W. G., Irmis, R. B., and Nesbitt, S. J. 2006a. Review of the Late Triassic dinosaur record from Petrified Forest National Park, Arizona. Pp. 160161in Parker et al. 2006b.Google Scholar
Parker, W. G., Ash, S. R., and Irmis, R. B., eds. 2006b. A century of research at Petrified Forest National Park. Museum of Northern Arizona Bulletin 62.Google Scholar
Peabody, F. E. 1956. Ichnites from the Triassic Moenkopi Formation of Arizona and Utah. Journal of Paleontology 30:731740.Google Scholar
Prochnow, S. J., Nordt, L. C., Atchley, S. C., Hudec, M. R. 2006. Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 232:5372.CrossRefGoogle Scholar
Pruss, S. B., Fraiser, M., and Bottjer, D. J. 2004. The proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology 32:461464.CrossRefGoogle Scholar
Pruss, S. B., Bottjer, D. J., and Corsetti, F. A. 2005. The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 222:3352.CrossRefGoogle Scholar
Ramezani, J., Hoke, G. D., Fastovsky, D. E., Bowring, S. A., Therrien, F., Dworkin, S. I., Atchley, S. C., and Nordt, L. C. 2011. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geological Society of America Bulletin 123:21422159.CrossRefGoogle Scholar
Reif, D. M., and Slatt, R. M. 1979. Red bed members of the Lower Triassic Moenkopi Formation. Journal of Sedimentary Petrology 49869–890.Google Scholar
Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37:317350.CrossRefGoogle Scholar
Sahney, S., and Benton, M. J. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society of London B 275:759765.Google ScholarPubMed
Sahney, S., Benton, M. J., and Ferry, P. A. 2010. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biology Letters 6:544547.CrossRefGoogle ScholarPubMed
Sanders, L. H. 1968. Marine benthic diversity: a comparison study. American Naturalist 102:243282.CrossRefGoogle Scholar
Schoch, R. R., Nesbitt, S. J., Müller, J., Lucas, S. G., and Boy, J. A. 2010. The reptile assemblage from the Moenkopi Formation (Middle Triassic) of New Mexico. Neues Jahrbuch für Geologie und Palaontologie 255:345369.CrossRefGoogle Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Early Triassic stromatolites as post–mass extinction disaster forms. Geology 20:883886.2.3.CO;2>CrossRefGoogle Scholar
Shotwell, J. A. 1955. An approach to the paleoecology of mammals. Ecology 36:327337.CrossRefGoogle Scholar
Steiner, M. B., Morales, M., and Shoemaker, E. M. 1993. Magnetostratigraphic, biostratigraphic, and lithologic correlations in Triassic strata of the western United States. InAissaouui, D. M., McNeil, D. F., and Hurley, N. F., eds. Applications of paleomagnetism to sedimentary geology. SEPM Special Publication 49:4157.Google Scholar
Therrien, F., and Fastovsky, D. 2000. Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15:194211.2.0.CO;2>CrossRefGoogle Scholar
Van der Voo, R., Mauk, F. J., and French, R. B. 1976. Permian–Triassic continental configurations and the origin of the Gulf of Mexico. Geology 4:177180.2.0.CO;2>CrossRefGoogle Scholar
Woody, D. T. 2006. Revised stratigraphy of the lower Chinle Formation (Upper Triassic) of Petrified Forest National Park, Arizona. Pp. 1745in Parker et al. 2006b.Google Scholar