Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T02:11:41.041Z Has data issue: false hasContentIssue false

Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape

Published online by Cambridge University Press:  08 February 2016

William C. Clyde
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109
Philip D. Gingerich
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Cantius is an early Eocene adapid primate with an exceptionally well known fossil record. Measurements were recorded to describe the size and shape of upper and lower first molars collected from a measured stratigraphic section in the Clarks Fork Basin of Wyoming. Rates of change of size and shape are quantified by calculating evolutionary rates in standard deviation units per generation (haldanes). Temporal scaling of rates shows that change in size was generated by a significantly nonrandom directional process, while change in shape was generated by a significantly nonrandom stabilizing process. Size change in Cantius is interpreted to be the result of weak directional selection, and shape change is interpreted to be the result of strong stabilizing selection.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Atchley, W. R., Gaskins, C. T., and Anderson, D. 1976. Statistical properties of ratios. I. Empirical results. Systematic Zoology 25:137148.CrossRefGoogle Scholar
Berggren, J. M., McKenna, M. C., Hardenbol, J., and Obradovich, J. D. 1978. Revised Paleogene polarity time scale. Journal of Geology 86:6781.CrossRefGoogle Scholar
Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions (with discussion and rejoinder). Statistical Science 1:181242.Google Scholar
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446464.CrossRefGoogle Scholar
Bookstein, F. L. 1988. Random walks and the biometrics of morphological characters. Pp. 369398in Hecht, M. K. and Wallace, B., eds. Evolutionary biology, Vol. 23. Plenum, New York.CrossRefGoogle Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press.Google Scholar
Bown, T. M., and Rose, K. D. 1987. Patterns of dental evolution in early Eocene Anaptomorphine Primates (Omomyidae) from the Bighorn Basin, Wyoming. Journal of Paleontology Memoir 23:1162.Google Scholar
Campbell, K. S. W., and Day, M. F. 1987. Rates of evolution. Allen and Unwin, London.Google Scholar
Cande, S. C., and Kent, D. V. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 97:13,917913,915.CrossRefGoogle Scholar
Charlesworth, B. 1984. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10:308318.CrossRefGoogle Scholar
Crompton, A. W., and Hiiemae, K. 1970. Molar occlusion and mandibular movements during occlusion in the American opossom, Didelphis marsupialis. Zoological Journal of the Linnean Society 49:2147.CrossRefGoogle Scholar
Dobzhanski, T. G. 1970. Genetics of the evolutionary process. Columbia University Press, New York.Google Scholar
Efron, B., and Tibshirani, R. 1986. Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. Statistical Science 1:5477.Google Scholar
Fenster, E. J., and Sorhannus, U. 1991. On the measurement of morphological rates of evolution. Pp. 375410in Hecht, M. K. and Wallace, B., eds. Evolutionary Biology, Vol. 25. Plenum, New York.Google Scholar
Foote, M. 1991. Analysis of morphological data. Pp. 5986in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short courses in paleontology, no. 4.Google Scholar
Gingerich, P. D. 1974. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Paleontology 48:895903.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science 276:128.CrossRefGoogle Scholar
Gingerich, P. D. 1977. Radiation of Eocene Adapidae in Europe. Géobios Mémoire spéciale 1:165182.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159161.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1984. Smooth curve of evolutionary rates: a psychological and mathematical artifact (response). Science 226:995.CrossRefGoogle Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends and transitions. Paleobiology 11:2741.CrossRefGoogle Scholar
Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates. American Journal of Science 293A:453478.CrossRefGoogle Scholar
Gingerich, P. D., and Simons, E. L. 1977. Systematics, phylogeny and evolution of early Eocene Adapidae (Mammalia, Primates) in North America. University of Michigan Papers on Paleontology 24:245279.Google Scholar
Gingerich, P. D., Smith, B. H., and Rosenberg, K. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58:81100.CrossRefGoogle ScholarPubMed
Gould, S. J. 1984. A smooth curve of evolutionary rate: a psychological and mathematical artifact. Science 226:994996.CrossRefGoogle Scholar
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.CrossRefGoogle Scholar
Gunnell, G. F., Bartels, W. S., and Gingerich, P. D. 1993. Paleocene-Eocene boundary in continental North America: biostratigraphy and geochronology, northern Bighorn Basin, Wyoming. Pp. 137144in Lucas, S. G. and Zidek, J., eds. Vertebrate paleontology in New Mexico. New Mexico Museum of Natural History and Science Bulletin 2.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurements of rates of evolution. Evolution 3:5156.CrossRefGoogle ScholarPubMed
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1989. A geologic time scale 1989. Cambridge University Press, New York.Google Scholar
Huxley, J. S. 1942. Evolution, the modern synthesis. Allen and Unwin, London.Google Scholar
Kay, R. F. 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology 43:195216.CrossRefGoogle ScholarPubMed
Kitchell, J. A., Estabrook, G., and MacLeod, N. 1987. Testing for equality of rates of evolution. Paleobiology 13:272285.CrossRefGoogle Scholar
Koch, P. L. 1986. Clinal geographic variation in mammals: implications for the study of chronoclines. Paleobiology 12:269281.CrossRefGoogle Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature (London) 358:319322.CrossRefGoogle Scholar
Kurtén, B. 1959. Rates of evolution in fossil mammals. Cold Spring Harbor Symposia on Quantitative Biology 24:205215.CrossRefGoogle ScholarPubMed
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314334.CrossRefGoogle ScholarPubMed
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 16:1110.Google Scholar
MacLeod, N. 1991. Punctuated anagenesis and the importance of stratigraphy to paleobiology. Paleobiology 17:167188.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. 1989. Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge.Google Scholar
Rose, K. D., and Bown, T. M. 1984. Gradual phyletic evolution at the generic level in early Eocene omomyid primates. Nature (London) 309:250252.CrossRefGoogle Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89:569584.CrossRefGoogle Scholar
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:14991510.2.0.CO;2>CrossRefGoogle Scholar
Sheldon, P. R. 1993. Making sense of microevolutionary patterns. Pp. 1931in Lees, D. R. and Edwards, D., eds. Evolutionary patterns and processes. Linnean Society Symposium, Vol. 14. Academic Press, London.Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology 11:1326.CrossRefGoogle Scholar
Stanley, S. M., and Yang, X. 1987. Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology 13:113139.CrossRefGoogle Scholar
Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M. 1990. The evolution of Antarctic surface waters during the Paleogene: Inferences from stable isotopic composition of planktonic foraminifers, ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results 113:849863.Google Scholar
Thompson, D. W. 1917. On growth and form. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Van Valen, L. 1974. Two modes of evolution. Nature (London) 252:290300.Google ScholarPubMed
Wing, S. L., Bown, T. M., and Obradovich, J. D. 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19:11891192.2.3.CO;2>CrossRefGoogle Scholar