Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:23:11.011Z Has data issue: false hasContentIssue false

Relatedness and the composition of communities over time: Evaluating phylogenetic community structure in the late Cenozoic record of bivalves

Published online by Cambridge University Press:  16 October 2020

Lucy M. Chang
Affiliation:
Department of Natural History, Royal Ontario Museum, Toronto, OntarioM5S 2C6, Canada. E-mail: lchang@rom.on.ca
Phillip L. Skipwith
Affiliation:
Department of Herpetology, American Museum of Natural History, New York, New York 10024, U.S.A.

Abstract

Understanding the mechanisms that prevent or promote the coexistence of taxa at local scales is critical to understanding how biodiversity is maintained. Competitive exclusion and environmental filtering are two processes thought to limit which taxa become established in a community. However, determining the relative importance of the two processes is a complex task, especially when the critical initial stages of colonization cannot be directly observed. Here, we explore the use of phylogenetic community structure for identifying filtering mechanisms in a fossil community. We integrated a time-calibrated molecular phylogeny of bivalve genera with a spatial dataset of late Cenozoic bivalves from the Pacific coast of North America to characterize how the community that was present in the semirestricted San Joaquin Basin (SJB) embayment of present-day California was phylogenetically structured. We employed phylogenetic distance-based metrics across six time bins spanning 27–2.5 Ma and found no evidence of significant clustering or evenness in the SJB community when compared with communities randomly assembled from the regional source pool. Additionally, we found that new colonizers into the SJB were not significantly more or less closely related to native taxa than expected by chance. These findings suggest that neither competitive exclusion nor environmental filtering were overwhelmingly influential factors shaping the composition of the SJB community over time. We further discuss interpretations of these patterns in light of current understandings in community phylogenetics and reiterate the critical role historical perspectives play in how community assembly rules are assessed.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Biology, University of Kentucky, Lexington, Kentucky 40506, U.S.A. E-mail: pskipwith@uky.edu

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.v9s4mw6sv

References

Literature Cited

Bartow, J. A. 1991. The Cenozoic Evolution of the San Joaquin Valley, California. U.S. Geological Survey Professional Paper 1501.Google Scholar
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W.. 2011. GenBank. Nucleic Acids Research 39:D32D37.CrossRefGoogle ScholarPubMed
Bieler, R., Mikkelsen, P. M., Collins, T. M., Glover, E. A., González, V. L., Graf, D. L., Harper, E. M., Healy, J., Kawauchi, G. Y., Sharma, P. P., Staubach, S., Strong, E. E., Taylor, J. D., Tëmkin, I., Zardus, J. D., Clark, S., Guzmán, A., McIntyre, E., Sharp, P., and Giribet, G.. 2014. Investigating the Bivalve Tree of Life—an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28:32.Google Scholar
Bowersox, J. R. 2005. Reassessment of extinction patterns of Pliocene molluscs from California and environmental forcing of extinction in the San Joaquin Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 221:5582.CrossRefGoogle Scholar
Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., Paolini, L., Pugnaire, F. I., Newingham, B., Aschehoug, E. T., Armas, C., Kikodze, D., and Cook, B. J.. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844848.CrossRefGoogle ScholarPubMed
Cavender-Bares, J., Ackerly, D. D., Baum, D. A., and Bazzaz, F. A.. 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163:823843.CrossRefGoogle ScholarPubMed
Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., and Kembel, S. W.. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693715.Google ScholarPubMed
Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343366.Google Scholar
Cornell, H. V., and Harrison, S. P.. 2014. What are species pools and when are they important? Annual Review of Ecology, Evolution, and Systematics 45:4567.CrossRefGoogle Scholar
Duncan, R. P., and Williams, P. A.. 2002. Darwin's naturalization hypothesis challenged. Nature 417:608609.CrossRefGoogle ScholarPubMed
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:17921797.CrossRefGoogle ScholarPubMed
Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:110.CrossRefGoogle Scholar
Fraser, D., Gorelick, R., and Rybczynski, N.. 2015. Macroevolution and climate change influence phylogenetic community assembly of North American hoofed mammals. Biological Journal of the Linnean Society 114:485494.Google Scholar
Fritz, S. A., and Purvis, A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits: selectivity in extinction risk. Conservation Biology 24:10421051.CrossRefGoogle ScholarPubMed
Fritz, S. A., Schnitzler, J., Eronen, J. T., Hof, C., Böhning-Gaese, K., and Graham, C. H.. 2013. Diversity in time and space: wanted dead and alive. Trends in Ecology and Evolution 28:509516.Google ScholarPubMed
Fukami, T. 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics 46:123.CrossRefGoogle Scholar
Gallien, L., and Carboni, M.. 2017. The community ecology of invasive species: where are we and what's next? Ecography 40:335352.Google Scholar
González, V. L., Andrade, S. C. S., Bieler, R., Collins, T. M., Dunn, C. W., Mikkelsen, P. M., Taylor, J. D., and Giribet, G.. 2015. A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society of London B 282:20142332.Google ScholarPubMed
Hall, C. A. 2002. Nearshore marine paleoclimatic regions, increasing zoogeographic provinciality, molluscan extinctions, and paleoshorelines, California: late Oligocene (27 Ma) to late Pliocene (2.5 Ma). Geological Society of America Special Paper 357:1489.Google Scholar
Hardy, C., Fara, E., Laffont, R., Dommergues, J. L., Meister, C., and Neige, P.. 2012. Deep-time phylogenetic clustering of extinctions in an evolutionarily dynamic clade (Early Jurassic Ammonites). PLoS ONE 7:e37977.CrossRefGoogle Scholar
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carlson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:675692.CrossRefGoogle Scholar
Hopkins, M.J., Simpson, C., and Kiessling, W.. 2014. Differential niche dynamics among major marine invertebrate clades. Ecology Letters 17:314323.CrossRefGoogle ScholarPubMed
Jablonski, D., and Finarelli, J. A.. 2009. Congruence of morphologically-defined genera with molecular phylogenies. Proceedings of the National Academy of Sciences USA 106:82628266.Google ScholarPubMed
Jackson, S. T., and Blois, J. L.. 2015. Community ecology in a changing environment: perspectives from the Quaternary. Proceedings of the National Academy of Sciences USA 112:49154921.Google Scholar
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., and Levine, J. M.. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592599.CrossRefGoogle Scholar
Li, J., Foighil, D. Ó, and Strong, E. E.. 2016. Commensal associations and benthic habitats shape macroevolution of the bivalve clade Galeommatoidea. Proceedings of the Royal Society of London B 283:20161006.Google ScholarPubMed
Li, S. P., Cadotte, M. W., Meiners, S. J., Hua, Z. S., Shu, H. Y., Li, J. T., and Shu, W. S.. 2015. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecology Letters 18:12851292.CrossRefGoogle ScholarPubMed
Lim, J., Crawley, M. J., De Vere, N., Rich, T., and Savolainen, V.. 2014. A phylogenetic analysis of the British flora sheds light on the evolutionary and ecological factors driving plant invasions. Ecology and Evolution 4:42584269.Google ScholarPubMed
Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:9951003.Google ScholarPubMed
Ma, C., Li, S., Pu, Z., Tan, J., Liu, M., Zhou, J., Li, H., and Jiang, L.. 2016. Different effects of invader–native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin's naturalization hypothesis. Proceedings of the Royal Society of London B 283:20160663.Google ScholarPubMed
Marx, H. E., Giblin, D. E., Dunwiddie, P. W., and Tank, D. C.. 2016. Deconstructing Darwin's naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Diversity and Distributions 22:318331.CrossRefGoogle Scholar
Mayfield, M. M., and Levine, J. M.. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities: phylogeny and coexistence. Ecology Letters 13:10851093.CrossRefGoogle Scholar
McClain, C. R., Stegen, J. C., and Hurlbert, A. H.. 2012. Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves. Proceedings of the Royal Society of London B 279:19932002.Google ScholarPubMed
McPeek, M. A. 2008. The ecological dynamics of clade diversification and community assembly. American Naturalist 172:E270E284.Google ScholarPubMed
Mergeay, J., De Meester, L., Eggermont, H., and Verschuren, D.. 2011. Priority effects and species sorting in a long paleoecological record of repeated community assembly through time. Ecology 92:22672275.Google Scholar
Miller, M. A., Pfeiffer, W., and Schwartz, T.. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Pp. 1–8 in 2010 Gateway computing environments workshop (GCE). IEEE, New York.CrossRefGoogle Scholar
Nawrot, R., Albano, P. G., Chattopadhyay, D., and Zuschin, M.. 2017. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions. Proceedings of the Royal Society of London B 284:20170357.Google ScholarPubMed
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., and Pearse, W.. 2018. Caper: comparative analyses of phylogenetics and evolution in R, R package version 1.0.1. https://CRAN.R-project.org/package=caper.Google Scholar
Park, D. S., and Potter, D.. 2013. A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proceedings of the National Academy of Sciences USA 110:1791517920.CrossRefGoogle ScholarPubMed
Procheş, Ş., Wilson, J. R. U., Richardson, D. M., and Rejmánek, M.. 2007. Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography 17:510.Google Scholar
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235:167171.CrossRefGoogle ScholarPubMed
Roy, K., Jablonski, D., and Valentine, J. W.. 2001. Climate change, species range limits and body size in marine bivalves. Ecology Letters 4:366370.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W.. 2002. Body size and invasion success in marine bivalves. Ecology Letters 5:163167.CrossRefGoogle Scholar
Roy, K., Hunt, G., and Jablonski, D.. 2009a. Phylogenetic conservatism of extinctions in marine bivalves. Science 325:733737.CrossRefGoogle Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z., and Valentine, J. W.. 2009b. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London B 276:14851493.Google Scholar
Saulsbury, J., Moss, D. K., Ivany, L. C., Kowalewski, M., Lindberg, D. R., Gillooly, J. F., Heim, N. A., McClain, C. R., Payne, J. L., Roopnarine, P. D., and Schöne, B. R.. 2019. Evaluating the influences of temperature, primary production, and evolutionary history on bivalve growth rates. Paleobiology 45:405420.Google Scholar
Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G., and Savolainen, V.. 2011. Testing Darwin's naturalization hypothesis in the Azores: predicting invasiveness in the Azores. Ecology Letters 14:389396.CrossRefGoogle ScholarPubMed
Sharma, P. P., González, V. L., Kawauchi, G. Y., Andrade, S. C. S., Guzmán, A., Collins, T. M., Glover, E. A., Harper, E. M., Healy, J. M., Mikkelsen, P. M., Taylor, J. D., Bieler, R., and Giribet, G.. 2012. Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Molecular Phylogenetics and Evolution 65:6474.CrossRefGoogle Scholar
Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:13121313.CrossRefGoogle ScholarPubMed
Stanton, R. J., and Dodd, J. R.. 1997. Lack of stasis in late Cenozoic marine faunas and communities, central California. Lethaia 30:239256.CrossRefGoogle Scholar
Strauss, S. Y., Webb, C. O., and Salamin, N.. 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences USA 103:58415845.Google ScholarPubMed
Thuiller, W., Gallien, L., Boulangeat, I., De Bello, F., Münkemüller, T., Roquet, C., and Lavergne, S.. 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Diversity and Distributions 16:461475.CrossRefGoogle Scholar
Tomašových, A., and Jablonski, D.. 2017. Decoupling of latitudinal gradients in species and genus geographic range size: a signature of clade range expansion. Global Ecology and Biogeography 26:288303.CrossRefGoogle Scholar
Warren, D. L., Geneva, A. J., and Lanfear, R.. 2017. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Molecular Biology and Evolution 34:10161020.Google Scholar
Webb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156:145155.CrossRefGoogle ScholarPubMed
Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J.. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475505.Google Scholar
Wiens, J. J., and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519539.Google Scholar
Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:15861591.Google ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google ScholarPubMed
Zalasiewicz, J., Williams, M., Haywood, A., and Ellis, M.. 2011. The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society of London A 369:835841.Google ScholarPubMed
Zenni, R. D., and Nuñez, M. A.. 2013. The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801815.CrossRefGoogle Scholar