Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T15:44:08.110Z Has data issue: false hasContentIssue false

Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa

Published online by Cambridge University Press:  08 April 2016

Roy E. Plotnick
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607. E-mail: plotnick@uic.edu
Peter J. Wagner
Affiliation:
Department of Geology, Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605

Abstract

Understanding the extent to which the reported fossil record reflects biological history, rather than preservational artifacts or other biasing factors, remains one of the central issues in the interpretation of the history of life on Earth. The development of large interactive paleontological databases, such as the Paleobiology Database (PBDB), allows detailed analyses of the patterns of occurrence, both regionally and globally, of taxa in the fossil record and makes possible testing hypotheses of the controls of the patterns. An analysis of data from the PBDB shows that most genera in the fossil record are rare, whereas a relatively small percentage of taxa account for a disproportionate share of the total occurrences. These ubiquitous taxa tend to be speciose and have long stratigraphic ranges. These patterns of occurrence might represent a true biological signal; it is also possible that they reflect taphonomic processes or are the result of taxonomic practice. In particular, common taxa may be taxonomic wastebaskets, i.e., residual and polyphyletic groups resulting from inadequate systematic attention and/or from taphonomic biases resulting in inadequate specimens being preferentially placed in particular genera. A conceptual model for the development of taxonomic wastebaskets suggests that these taxa should be speciose, widely distributed, common, and old (in terms of year of first description), and that they should be the nominate forms for higher taxa. Our analyses suggest that many of the common taxa in the PBDB are consistent with two or more of these expectations and are thus good candidates for being wastebaskets. These taxa are, however, only a small percentage of total genera. A more detailed examination of one group, early gastropods, indicates that possible wastebaskets still are present in a group that has received much recent systematic work. Given that likely wastebasket taxa are a small fraction of all genera, they probably have little effect on overall temporal patterns of generic richness. Their impact on other types of metrics, such as turnover rates or metrics of community diversity or biogeographic similarity, however, might be quite important.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M., and Westrop, S. R. 2003. Paleobiodiversity: we need new data. Paleobiology 29:2225.2.0.CO;2>CrossRefGoogle Scholar
Aldridge, R. J. 1990. Disarticulated animal fossils. Pp. 419421 in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: a synthesis. Blackwell Scientific, London.Google Scholar
Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology 20:191207.CrossRefGoogle Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J. 2003a. Global databases will yield reliable measures of global biodiversity. Paleobiology 29:2629.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2003b. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy 84:431443.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., John Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversity. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Babcock, J. A. 1986. The puzzle of alga-like Problematica, or rummaging around in the algal wastebasket. Pp. 311 in Hoffman, A. and Nitecki, M. H., eds. Problematic fossil taxa. Oxford University Press, New York.Google Scholar
Badgley, C. 2003. The multiple scales of biodiversity. Paleobiology 29:1113.2.0.CO;2>CrossRefGoogle Scholar
Behrensmeyer, A. F., Fürsich, F. T. F., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Alroy, J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology 31:607623.CrossRefGoogle Scholar
Bengston, P. 1988. Open nomenclature. Palaeontology 31:223227.Google Scholar
Bengston, S. 1985. Redescription of the Lower Cambrian Halkieria obliqua Poulsen. Geologiska Föreningens i Stockholm Förhandlingar 107:101106.Google Scholar
Bengston, S. 1986. The problem of the Problematica. Pp. 311 in Hoffman, A. and Nitecki, M. H., eds. Problematic fossil taxa. Oxford University Press, New York.Google Scholar
Bengston, S. 1990. Problematic fossil taxa. Pp. 442445 in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell, Oxford.Google Scholar
Benton, M. J. 1999. The history of life: large databases in palaeontology. Pp. 249283 in Harper, D. A. T., ed. Numerical palaeontology. Wiley, Chichester, U.K. Google Scholar
Bouchet, P., Lozouet, P., Maestratt, P., and Heros, V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society 75:421436.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal of Paleontology 57:130.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Butler, P. M. 1972. The problem of insectivore classification. Pp. 253265 in Joysey, K. and Kemp, T., eds. Studies in vertebrate evolution. Oliver and Boyd, Edinburgh.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.Google Scholar
Cook, A. G., Blodgett, R. B., and Becker, R. T. 2003. Late Devonian gastropods from the Canning Basin, Western Australia. Alcheringa 27:181207.Google Scholar
Enquist, B. J., Haskell, J. P., and Tiffney, B. H. 2002. General patterns of taxonomic diversity and biomass partitioning across tree dominated communities. Nature 419:610613.CrossRefGoogle Scholar
Fell, H. B. 1966. Cidaroids. Pp. 332332 in Moore, R. C., ed. Treatise on invertebrate paleontology. University of Kansas Press, Lawrence.Google Scholar
Gaston, K. J., and He, F. 2002. The distribution of species range size: a stochastic process. Proceedings of the Royal Society of London B 269:10291086.Google Scholar
Gould, S. J. 1985. Treasures in a taxonomic wastebasket. Natural History 94:2233.Google Scholar
Gould, S. J. 1989. Wonderful life. W. W. Norton, New York.Google Scholar
Hanski, I., and Gyllenberg, M. 1997. Uniting two general patterns in the distribution of species. Science 275:397400.Google Scholar
Hayek, L.-A. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hoare, R. D., Mapes, R. H., and Yancey, T. E. 2002. Structure, taxonomy, and epifauna of Pennsylvanian rostroconchs (Mollusca). Journal of Paleontology Memoir 58:130.Google Scholar
Hoffman, A., and Nitecki, M. H. 1986. Problematic fossil taxa. Oxford University Press, New York.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.Google Scholar
Jablonski, D. 1995. Extinction in the fossil record. Pp. 2544 in May, R. M. and Lawton, J. H., eds. Extinction rates. Oxford University Press, Oxford.Google Scholar
Jablonski, D. 2003. The interplay of physical and biotic factors in macroevolution. Pp. 235252 in Lister, A. and Rothschild, L., eds. Evolution on planet Earth: the impact of the physical environment. Academic Press, New York.Google Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the Pull of the Recent on the history of marine diversity. Science 300:11331135.Google Scholar
Jernvall, J., and Fortelius, M. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417:538540.Google Scholar
Johnson, K. G. 2003. New data for old questions. Paleobiology 29:1921.Google Scholar
Knight, J. B. 1941. Paleozoic gastropod genotypes. Geological Society of America Special Paper 32:1510.Google Scholar
Knight, J. B., Cox, L. R., Batten, R. L., and Yochelson, E. L. 1960. Systematic descriptions. Pp. 169324 of Moore, R. C. et al. Mollusca 1. Part I of in Moore, R. C., eds. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.CrossRefGoogle Scholar
Koch, C. F. 1998. “Taxonomic barriers” and other distortions within the fossil record. Pp. 189206 in Donovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. John Wiley, Chichester, U.K. Google Scholar
Lee, M. S. Y., and Spencer, P. S. 1997. Crown-classes, key characters and taxonomic stability: when is an amniote not an amniote? Pp. 6184 in Sumida, S. S. and Martin, K. L. M., eds. Amniote origins. Academic Press, San Diego.CrossRefGoogle Scholar
Lindström, G. 1884. The Silurian Gastropoda and Pteropoda of Gotland. Kongliga Svenska Vetenskaps-Akademiens Handlingasr 19:1250.Google Scholar
Ma, X., and Day, J. 2003. Revision of selected North American and Eurasian Late Devonian (Frasnian) species of Cyrtospirifer and Regelia (Brachiopoda). Journal of Paleontology 77:267292.2.0.CO;2>CrossRefGoogle Scholar
Maczynska, S. 1977. Echinoids from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica 27:193200.Google Scholar
Maczynska, S. 1987. A supplementary account on the echinoids from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica 37:145153.Google Scholar
Manten, A. A. 1971. Silurian reefs of Gotland. Elsevier, Amsterdam.Google Scholar
May, R. M. 1975. Patterns of species abundance and diversity. Pp. 87120 in Cody, M. L. and Diamond, J. M., eds. Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Miller, A. I. 2003. On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology 29:1518.Google Scholar
Minelli, A. 1993. Biological Systematics. Chapman and Hall, London.Google Scholar
Nee, S. 2003. In praise of the big picture. Paleobiology 29:810.Google Scholar
Padian, K. 1997. The origin of dinosaurs. Pp. 481487 in Currie, P. and Padian, K., eds. Encyclopedia of dinosaurs. Academic Press, New York.Google Scholar
Plotnick, R. E. 2002. Round up the usual suspects: ubiquitous taxa and systematic inertia. Geological Society of America Abstracts with Programs 54:542.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. U.S. Geological Survey Professional Paper 968:188.Google Scholar
Prothero, D. R., and Schoch, R. M. 2002. Horns, tusks and flippers: the evolution of hoofed mammals. Johns Hopkins University Press, Baltimore.Google Scholar
Rabinowitz, D. 1981. Seven forms of rarity. Pp. 205217 in Synge, H., ed. The biological aspects of rare plant conservation. Wiley, New York.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Rothfus, T. A. 2002. Relationship between taphonomic damage and taxonomic identifiability: implications for paleoecologic analysis. Geological Society of America Abstracts with Programs 34:36.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1996. Higher taxa in biodiversity studies: patterns from eastern Pacific marine molluscs. Philosophical Transactions of the Royal Society of London B 351:16051613.Google Scholar
Scharff, N., Coddington, J. A., Griswold, C. E., Hormiga, G., and Bjorn, P. de P. 2003. When to quit? Estimating spider species richness in a northern European deciduous forest. Journal of Arachnology 31:246273.Google Scholar
Scotland, R. W., and Sanderson, M. J. 2004. The significance of few versus many in the Tree of Life. Science 303:643.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1563.Google Scholar
Shimer, H. W., and Schrock, R. R. 1944. Index fossils of North America. Wiley, New York.Google Scholar
Smith, A. B. 2003. Getting the measure of diversity. Paleobiology 29:3436.2.0.CO;2>CrossRefGoogle Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.CrossRefGoogle Scholar
Smith, M. D., Wilcox, J. C., Kelly, T., and Knapp, A. K. 2004. Dominance not richness determines invasibility of tallgrass prairie. Oikos 106:253262.Google Scholar
Sohl, N. F., and Koch, C. F. 1983. Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira assemblage zone in the east Gulf Coastal Plain. U.S. Geological Survey Open-File Report 83-451:239.Google Scholar
Sohl, N. F., and Koch, C. F. 1984. Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira assemblage zone in the west Gulf Coastal Plain. U.S. Geological Survey Open-File Report 84-687:282.Google Scholar
Sohl, N. F., and Koch, C. F. 1987. Upper Cretaceous (Maestrichtian) larger invertebrates from the Haustator bilira assemblage zone in the Atlantic coastal plain with further data for the east gulf. U.S. Geological Survey Open-File Report 87-194:172.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed. W. H. Freeman, New York.Google Scholar
Solan, M., Cardinale, B. J., Downing, A. L., Engelhardt, K. A. M., Ruesink, J. L., and Srivastava, D. S. 2004. Extinction and ecosystem function in the marine benthos. Science 306:11771180.Google Scholar
Theodor, J. M. 2002. Evolutionary biology—crowning glories. Nature 417:498499.Google Scholar
Thomas, B. A. 1990. Disarticulated plant fossils. Pp. 421423 in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: a synthesis. Blackwell Scientific, London.Google Scholar
Vermeij, G. J., and Herbert, G. S. 2004. Measuring relative abundance in fossil and living assemblages. Paleobiology 30:14.Google Scholar
Vermeij, G. J., and Leighton, L. R. 2003. Does global diversity mean anything? Paleobiology 29:37.Google Scholar
Wagner, P. J. 1995. Diversification among early Paleozoic gastropods: contrasting taxonomic and phylogenetic descriptions. Paleobiology 21:410439.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.Google Scholar
Wagner, P. J. 1999a. Phylogenetics of Ordovician–Silurian Lophospiridae (Gastropoda: Murchisoniina): the importance of stratigraphic data. American Malacological Bulletin 15:131.Google Scholar
Wagner, P. J. 1999b. Phylogenetics of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88:1132.Google Scholar
Wagner, P. J. 2000. Exhaustion of cladistic character states among fossil taxa. Evolution 54:365386.Google Scholar
Wagner, P. J. 2001. Rate heterogeneity in shell character evolution among lophospiroid gastropods. Paleobiology 27:290310.Google Scholar
Wagner, P. J., and Erwin, D. H. In press. Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology.Google Scholar
Whiteley, T. E., Kloc, G. J., and Brett, C. E. 2002. Trilobites of New York. Cornell University Press, Ithaca, N.Y. Google Scholar
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 280:409443.Google Scholar
Willig, M. R. 2003. Challenges to understanding dynamics of biodiversity in time and space. Paleobiology 29:3033.Google Scholar
Withner, C. L. 1996. The Cattleyas and their relatives: the Bahamian and Caribbean species. Timber Press, Portland, Ore. Google Scholar
Yochelson, E. L. 1991. Problematica—-incertae sedis. Pp. 287296 in Simonetta, A. M. and Conway Morris, S., eds. The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar