Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T17:12:28.926Z Has data issue: false hasContentIssue false

The sampling and estimation of marine paleodiversity patterns: implications of a Pliocene model

Published online by Cambridge University Press:  08 April 2016

James W. Valentine
Affiliation:
Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, U.S.A. E-mail: jwvsossi@socrates.berkeley.edu
David Jablonski
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, U.S.A.
Andrew Z. Krug
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, U.S.A.
Sarah K. Berke
Affiliation:
Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, U.S.A. E-mail: jwvsossi@socrates.berkeley.edu

Abstract

Data that accurately capture the spatial structure of biodiversity are required for many paleobiological questions, from assessments of changing provinciality and the role of geographic ranges in extinction and originations, to estimates of global taxonomic or morphological diversity through time. Studies of temporal changes in diversity and global biogeographic patterns have attempted to overcome fossil sampling biases through sampling standardization protocols, but such approaches must ultimately be limited by available literature and museum collections. One approach to evaluating such limits is to compare results from the fossil record with models of past diversity patterns informed by modern relationships between diversity and climatic factors. Here we use present-day patterns for marine bivalves, combined with data on the geologic ages and distributions of extant taxa, to develop a model for Pliocene diversity patterns, which is then compared with diversity patterns retrieved from the literature as compiled by the Paleobiology Database (PaleoDB). The published Pliocene bivalve data (PaleoDB) lack the first-order spatial structure required to generate the modern biogeography within the time available (<3 Myr). Instead, the published data (raw and standardized) show global diversity maxima in the Tropical West Atlantic, followed closely by a peak in the cool-temperate East Atlantic. Either today's tropical West Pacific diversity peak, double that of any other tropical region, is a purely Pleistocene phenomenon—highly unlikely given the geologic ages of extant genera and the topology of molecular phylogenies—or the paleontological literature is such a distorted sample of tropical Pliocene diversity that current sampling standardization methods cannot compensate for existing biases. A rigorous understanding of large-scale spatial and temporal diversity patterns will require new approaches that can compensate for such strong bias, presumably by drawing more fully on our understanding of the factors that underlie the deployment of diversity today.

Type
Featured Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abrard, R. 1942. Mollusques pleistocènes de la Côte française des Somalis. Archives du Museum National d'Histoire Naturelle, 6 série, 18:5107.Google Scholar
Alejandrino, A., Puslednik, L., and Serb, J. M. 2011. Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evolutionary Biology 11:164.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J. 2010a. Geographical, environmental and intrinsic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.Google Scholar
Alroy, J. 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Barron, J. W. 1996. Diatom constraints on the position of the Antarctic Polar Front in the middle part of the Pliocene. Marine Micropaleontology 27:195213.Google Scholar
Best, M. M. R., Ku, T. C. W., Kidwell, S. M., and Walter, L. M. 2007. Carbonate preservation in shallow marine environments: Unexpected role of tropical siliciclastics. Journal of Geology 115:437456.Google Scholar
Beu, A. G. 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand, Part 1. Revised generic positions and recognition of warm-water and cool-water migrants. Journal of the Royal Society of New Zealand 34:111265.CrossRefGoogle Scholar
Beu, A. G. 2006. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 2. Biostratigraphically useful and new Pliocene to Recent bivalves. Journal of the Royal Society of New Zealand 36:151338.Google Scholar
Beu, A.G., and Raine, J. I. 2009. Revised descriptions of New Zealand Cenozoic Mollusca from Beu and Maxwell (1990). GNS Science Miscellaneous Series No. 27.Google Scholar
Birand, A., Vose, A., and Gavrilets, S. 2012. Patterns of species ranges, speciation, and extinction. American Naturalist 179:121.Google Scholar
Bouchet, P. 2006. The magnitude of marine biodiversity. Pp. 3262inDuarte, C. M., ed. The exploration of marine biodiversity scientific and technological challenges. Fundación BBVA, Bilbao.Google Scholar
Bouchet, P., Lozouet, P., Maestrati, P., and Heros, V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society 75:421436.Google Scholar
Briggs, J. C. 2005. The marine East Indies: diversity and speciation. Journal of Biogeography 32:15171522.CrossRefGoogle Scholar
Briggs, J. C. 2007. Marine longitudinal biodiversity: causes and conservation. Diversity and Distributions 13:544555.Google Scholar
Briggs, J. C., and Bowen, B. W. 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39:1230.Google Scholar
Bromfield, K., and Pandolfi, J. M. 2011. Regional patterns of evolutionary turnover in Neogene coral reefs from the central Indo-West Pacific Ocean. Evolutionary Ecology, published online May 2011.Google Scholar
Budd, A. F., Foster, C. T. Jr., Dawson, J. P., and Johnson, K. G. 2001. The Neogene Marine Biota of Tropical America (“NMITA”) Database: accounting for biodiversity in paleontology. Journal of Paleontology 75:743751.Google Scholar
Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S., and Johnson, K. G. 2008. The Neogene Marine Biota of Tropical America (“NMITA”) Database: integrating data from the Dominican Republic Project. Pp. 301310inNehm, R. H. and Budd, A. F., eds. Evolutionary stasis and change in the Dominican Republic Neogene. Springer, Berlin.Google Scholar
Campbell, L. D. 1993. Pliocene molluscs from the Yorktown and Chowan river formations in Virginia. Virginia Division of Mineral Resources Publication 127:1259.Google Scholar
Carlton, J. T. 2009. Deep invasion ecology and the assembly of communities in historical time. Pp. 1356inRilov, G. and Crooks, J. A., eds. Biological invasions in marine ecosystems. Springer, Berlin.CrossRefGoogle Scholar
Chen, J., Li, Q., Kong, L., and Zheng, X. 2011. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China. Zoologica Scripta 40:260271.CrossRefGoogle Scholar
Coan, E. V., Valentich-Scott, P., and Bernard, F. R. 2000. Bivalve seashells of Western North America. Santa Barbara Museum of Natural History, Santa Barbara.Google Scholar
Compton, T. J., Rijkenberg, M. J. A., Drent, J., and Piersma, T. 2007. Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates. Journal of Experimental Marine Biology and Ecology 352:200211.Google Scholar
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241244.Google Scholar
Cossmann, M. 1924. Faune pliocènique de Karikal (Inde Française). Pélécypodes (fin). Journal de Conchyliologie 68:85150.Google Scholar
Cox, L. R. 1927. Neogene and Quaternary Mollusca from the Zanzibar Protectorate. Report on Palaeontology of Zanzibar Protectorate, pp. 13102. Government Printer, Zanzibar.Google Scholar
Cox, L. R. 1929. Notes on the Post-Miocene Ostreidae and Pectinidae of the Red Sea region, with remarks on the geological significance of their distribution. Proceedings of the Malacological Society of London 18:165209.Google Scholar
Cox, L. R. 1930. Report on geological collections from the coastlands of Kenya Colony made by Miss M. McKinnon Wood. V: Miocene Mollusca, VI: Pliocene Mollusca, VII: Post Pliocene Mollusca. Geology Department, Hunterian Museum, Glasgow University, Monograph 4:103163.Google Scholar
Crame, J. A. 1984. Neogene and Quaternary Mollusca from the Makran Coast, Pakistan. Pp. 4561inHaq, B. U. and Milliman, J. D., eds. Marine geology and oceanography of Arabian Sea and coastal Pakistan. Van Nostrand Reinhold, New York.Google Scholar
Crame, J. A. 2000. Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas. Paleobiology 26:188214.Google Scholar
Crame, J. A. 2001. Taxonomic diversity gradients through geological time. Diversity and Distributions 7:175189.Google Scholar
Crame, J. A., and Rosen, B. R. 2002. Cenozoic palaeogeography and the rise of modern biodiversity patterns. Geological Society of London Special Publication 177:227246.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P.A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C.M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Cunha, R. L., Blanc, F., Bonhomme, F., and Arnaud-Haond, S. 2011. Evolutionary patterns in pearl oysters of the genus Pinctada (Bivalvia: Pteriidae). Marine Biotechnology 13:181192.Google Scholar
Darwin, C. 1859. On the origin of species. J. Murray, London.Google Scholar
Dowsett, H. J., Chandler, M. A., and Robinson, M. M. 2009. Surface temperatures of the mid-Pliocene North Atlantic Ocean: implications for future climate. Philosophical Transactions of the Royal Society of London A 367:6984.Google Scholar
Dowsett, H., Robinson, M., Haywood, A., Salzmann, U., Hill, D., Sohl, L., Chandler, M., Williams, M., Foley, K., and Stoll, D. 2010. The PRISM3D paleoenvironmental reconstruction. Stratigraphy 7:123139.Google Scholar
Eames, F. E., and Cox, L. R. 1956. Some Tertiary Pectinacea from East Africa, Persia, and the Mediterranean region. Proceedings of the Malacological Society of London 32:168.Google Scholar
Ekman, S. 1953. Zoogeography of the sea. Sidgwick and Jackson, London.Google Scholar
Emerson, W. K. 1967. Indo-Pacific faunal elements in the tropical eastern Pacific, with special reference to the mollusks. Venus 25:8593.Google Scholar
Emerson, W. K. 1978. Mollusks with Indo-Pacific faunal affinities in the Eastern Pacific Ocean. Nautilus 92:9196.Google Scholar
Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Alexandre, J., Diniz-Filho, F., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., and Turner, J. R. G. 2009. Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography 36:132147.Google Scholar
Fisher, J. A. D., Frank, K. T., and Leggett, W. C. 2010. Dynamic macroecology on ecological time-scales. Global Ecology and Biogeography 19:115.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: General problems. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's Perspective. Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M. 2001. Evolutionary rates and the age distributions of living and extinct taxa. Pp. 245294inJackson, J. B. C., Lidgard, S., and McKinney, M. L., eds. Evolutionary patterns. University of Chicago Press, Chicago.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.Google Scholar
Freneix, S., Karche, J. P., and Salvat, B. 1971. Mollusques pliocènes du Nord de Madagascar. Annales de Paléontologie 57:343.Google Scholar
Frey, M. A., and Vermeij, G. J. 2008. Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics. Molecular Phylogenetics and Evolution 48:10671086.CrossRefGoogle ScholarPubMed
Glover, E. A., and Taylor, J. D. 2007. Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae (Mollusca, Bivalvia) of New Caledonia and Lifou. Zoosystema 29:109181.Google Scholar
Hall, C. A. Jr., 2002. Nearshore marine paleoclimatic regions, increasing zoogeographic provinciality, molluscan extinctions, and paleoshorelines, California: Late Oligocene (27 Ma) to Late Pliocene (2.5 Ma). Geological Society of America Special Paper 357.Google Scholar
Hannisdal, B., and Peters, S. E. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science 334:11211124.Google Scholar
Harnik, P.G., Jablonski, D., Krug, A. Z., and Valentine, J. W. 2010. Genus age, provincial area and the taxonomic structure of marine faunas. Proceedings of the Royal Society of London B 277:34273435.Google Scholar
Harper, E. M. 1998. The fossil record of bivalve molluscs. Pp. 243267inDonovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. Wiley, Chichester, U.K.Google Scholar
Hawkins, B. A. 2012. Eight (and a half) deadly sins of spatial analysis. Journal of Biogeography 39:19.Google Scholar
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.Google Scholar
Higo, S., Callomon, P., and Goto, Y. 1999. Catalogue and bibliography of the marine shell-bearing Mollusca of Japan. Elle Scientific Publications, Osaka, Japan.Google Scholar
Hillebrand, H. 2004a. On the generality of the latitudinal diversity gradient. American Naturalist 163:192211.Google Scholar
Hillebrand, H. 2004b. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273:251267.Google Scholar
Hoeksema, B. 2007. Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. Pp. 117178inRenema, W., ed. Biogeography, time, and place: distributions, barriers, and islands. Springer, Berlin.Google Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski's question. Palaeobiology 53:12371254.Google Scholar
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.CrossRefGoogle ScholarPubMed
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105 (Suppl. 1):1152811535.Google Scholar
Jablonski, D., and Roy, K. 2003. Geographic range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401406.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2000. Analysing the latitudinal diversity gradient in marine bivalves. InHarper, E. M., Taylor, J. D., and Crame, J. A., eds. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177:361365.Google Scholar
Jablonski, D., 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2001. Measuring past biodiversity. Science 293:24012403.Google Scholar
Johnson, K. G., Renema, W., andthe Throughflow Project. 2011. Late Cenozoic history of the Southeast Asian marine biodiversity maximum: new data for old questions. 55th Annual Meeting Palaeontological Association, Abstracts, p. 26.Google Scholar
Kiel, S., and Nielsen, S. N. 2010. Quaternary origin of the inverse latitudinal diversity gradient among southern Chilean mollusks. Geology 38:955958Google Scholar
Kiessling, W., Simpson, C., and Foote, M. 2010. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196198.Google Scholar
Knowlton, N., Brainerd, R. E., Fisher, R., Moews, M., Plaisance, L., and Caley, M. J. 2010. Coral reef biodiversity. Pp. 6577inMcIntyre, A. D., ed. Life in the world's oceans: diversity, distribution, and abundance. Wiley-Blackwell, Chichester, U.K.Google Scholar
Krug., A. Z., and Patzkowsky, M. W. 2007. Geographic recovery in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435454.Google Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W. 2007. Contrarian clade confirms the ubiquity of spatial origination patterns in the production of latitudinal diversity gradients. Proceedings of the National Academy of Sciences USA 104:1812918134.Google Scholar
Krug, A.Z., Jablonski, D., and Valentine, J. W. 2008. Species-genus ratios reflect a global history of diversification and range expansion in marine bivalves. Proceedings of the Royal Society of London B 275:11171123.Google Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W. 2009a. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767771.CrossRefGoogle ScholarPubMed
Krug, A. Z., Jablonski, D., Valentine, J. W., and Roy, K. 2009b. Generation of Earth's first-order biodiversity pattern. Astrobiology 9:113124.Google Scholar
Lessios, H. A., and Robertson, D. R. 2006. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proceedings of the Royal Society of London B 273:22012208.Google Scholar
Little, C. T. S., and Vrijenhoek, R. C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution 18:582588.Google Scholar
Long, P. E., and Zalasiewicz, J. A. 2011. The molluscan fauna of the Coralline Crag (Pliocene, Zanclean) at Raydon Hall, Suffolk, UK: palaeoecological significance reassessed. Palaeogeography, Palaeoclimatology, Palaeoecology 309:5372.Google Scholar
Losos, J. B. 2011. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. American Naturalist 177:709727.Google Scholar
Lutz, B. P. 2011. Shifts in North Atlantic planktic foraminifer biogeography and subtropical gyre circulation during the mid-Piacenzian warm period. Marine Micropaleontology 80:125149.Google Scholar
Marquet, R. 2005. The Neogene Bivalvia (Heterodonta and Anomalodesmata) and Scaphopoda from Kallo and Doel (Oost Vlaanderen, Belgium). Palaeontos 6:1142.Google Scholar
Matthiessen, J., Knies, J., Vogt, C., and Stein, R. 2008. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas. Philosophical Transactions of the Royal Society of London B 367:2148.Google Scholar
Maxwell, P. A. 2009. Cenozoic Mollusca. Pp232254inGordon, D. P., ed. New Zealand inventory of biodiversity, Vol. 1. Kingdom Animalia. Canterbury University Press, Christchurch, N.Z.Google Scholar
Met Office Hadley Centre 20062010. HadISST 1.1. Global sea-ice coverage and SST (1870–present). NCAS British Atmospheric Data Centre. http://badc.Nerc.Ac.Uk/view/badc.Nerc.Ac.Uk__atom__dataent_hadisst.Google Scholar
Meyer, C. P. 2003. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society 79:401459.Google Scholar
Monegatti, P., and Raffi, S. 2001. Taxonomic diversity and stratigraphic distribution of Mediterranean Pliocene bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 165:171193.Google Scholar
Morlon, H., Parsons, T. L., and Plotkin, J. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences USA 108:1632716332.Google Scholar
Munk, W. H. 1950. On the wind-driven ocean circulation. Journal of Meteorology 7:7993.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 26:371385.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. Geological Society of America Special Paper 89:6391.Google Scholar
Niiler, P. 2001. The world ocean surface circulation. Pp. 193204inSiedler, G., Church, J., and Gould, J., eds. Ocean circulation and climate. International Geophysics, Vol. 77. Academic Press, New York.Google Scholar
Novack-Gottshall, P. M, and Miller, A. I. 2003. Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician radiation. Paleobiology 29:576604.Google Scholar
Paulay, G. 2003. The Bivalvia (Mollusca) of Guam. Micronesica 35–36:218243.Google Scholar
Paulay, G., and Meyer, C. 2002. Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integrative and Comparative Biology 42:922934.Google Scholar
Quental, T., and Marshall, C. R. 2009. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology and Evolution 25:434441.Google Scholar
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research 108 (4407), 29pp.doi:10.1029/2002JD002670.Google Scholar
Reaka, M. L., Rodgers, P. S., and Kudla, A. U. 2008. Patterns of biodiversity and endemism on Indo-West Pacific coral reefs. Proceedings of the National Academy of Sciences USA 105:1147411481.Google Scholar
Renema, W., Bellwood, D. R., Braga, J. D., Bromfield, K., Hall, R., Johnson, K. G., Lunt, P., Meyer, C. P., McMonagle, L. B., Morley, R. J., O'Dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J., and Pandolfi, J. M. 2008. Hopping hotspots: global shifts in marine biodiversity. Science 321:654657.Google Scholar
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235:167171.Google Scholar
Ricklefs, R. E. 2007. History and diversity: explorations at the intersection of ecology and evolution. American Naturalist 170 (Suppl.):S56S70.Google Scholar
Rivadeneira, M. M., and Marquet, P. A. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455468.CrossRefGoogle Scholar
Robinson, M. M. 2009. New quantitative evidence of extreme warmth in the Pliocene Arctic. Stratigraphy 6:265275.CrossRefGoogle Scholar
Rosen, B. R. 1984. Reef coral biogeography and climate through the late Cainozoic: just islands in the sun or a critical pattern of islands? Pp201262inBrenchley, P., ed. Fossils and climate. Wiley, Chichester, U.K.Google Scholar
Roy, K., and Goldberg, E. E. 2007. Origination, extinction and dispersal: integrative models for understanding present-day diversity gradients. American Naturalist 170:S71S85.Google Scholar
Roy, K., and Witman, J. D. 2009. Spatial patterns of species diversity in the shallow marine invertebrates: patterns, processes, and prospects. Pp. 101121inWitman, J. D. and Roy, K., eds. Marine macroecology. University of Chicago Press, Chicago.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z, and Valentine, J. W. 2009. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London B 276:14851493.Google Scholar
Schiaparelli, S., Barucca, M., Olmo, E., Boyer, M., and Canapa, A. 2005. Phylogenetic relationships within Ovulidae (Gastropoda: Cypraeoidea) based on molecular data from the 16S rRNA gene. Marine Biology 147:411420.Google Scholar
Sepkoski, J. J. Jr., 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1563.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.Google Scholar
Stommel, H. 1948. The westward intensification of wind-driven ocean currents. Transactions of the American Geophysical Union 29:202206.Google Scholar
Sunday, J. S., Bates, A. E., and Dulvyl, N. K. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B 278:18231830.Google Scholar
Taylor, J. D., Glover, E. A., Smith, L., Dyal, P., and Williams, S. T. 2011. Molecular phylogeny and classification of the chemosymbiotic bivalve family Lucinidae (Mollusca: Bivalvia). Zoological Journal of the Linnean Society 163:1549.Google Scholar
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Vanden Berghe, E., and Worm, B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:10981101.Google Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: Molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.Google Scholar
Tomašových, A., Berke, S. H., Jablonski, D., Krug, A. Z., Roy, K., and Valentine, J. W. 2011. Non-linear climatic gradients decouple latitudinal range from environmental specialization. Our Oceans Our Future: World Conference on Marine Biodiversity, University of Aberdeen, Oral Abstract Booklet, p. 38.Google Scholar
Valentine, J.W. 1968. Climatic regulation of species diversification and extinction. Geological Society of America Bulletin 79:273276.Google Scholar
Valentine, J.W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J.W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Valentine, J.W. 2009. Overview of marine biodiversity. Pp. 328inWitman, J. D. and Roy, K., eds. Marine macroecology. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. Pp. 341349inRicklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W., 2010. Origins of marine patterns of biodiversity: some correlates and applications. Palaeontology 53:12031210.Google Scholar
Valentine, J. W., Jablonski, D., Kidwell, S. M., and Roy, K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. Proceedings of the National Academy of Sciences USA 103:65996604.Google Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Roy, K. 2008. Incumbency, diversity, and latitudinal gradients. Paleobiology 34:169178.Google Scholar
Vermeij, G. J. 1987. The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction. Evolution 41:10461058.Google Scholar
Vermeij, G. J. 2001. Community assembly in the sea: geologic history of the living shore biota. Pp. 3960inBertness, M. D., Gaines, S. D., and Hay, M. E., eds. Marine community ecology. Sinauer, Sunderland, Mass.Google Scholar
Vermeij, G. J. 2012a. The tropical history and future of the Mediterranean biota and the West African enigma. Journal of Biogeography 39:3141.Google Scholar
Vermeij, G. J. 2012b. Crucibles of creativity: the geographic origins of tropical molluscan innovations. Evolutionary Ecology 26:357373.Google Scholar
Veron, J. E. N., Devantier, L. M., Turak, E., Green, A. L., Kininmonth, S., Stafford-Smith, M., and Peterson, N. 2009. Delineating the Coral Triangle. Galaxea, Journal of Coral Reef Studies 11:91100.Google Scholar
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow shelf and deep marine settings. Journal of Geology 110:7588.Google Scholar
Wells, F. E. 2002. Centres of species richness and endemism of shallow water marine molluscs in the tropical Indo-West Pacific. Proceedings of the ninth international coral reef symposium 2:941945.Google Scholar
Wiens, J. J., and Donoghue, M. J. 2004. Historical biogeography, ecology, and species richness. Trends in Ecology and Evolution 19:639644.Google Scholar
Williams, S. T. 2007. Origins and diversification of Indo-West Pacific marine fauna: evolutionary history and biogeography of turban shells (Gastropoda, Turbinidae). Biological Journal of the Linnean Society 92:573592.Google Scholar
Williams, S. T., and Duda, T. F. Jr. 2008. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific? Evolution 62:16181634.Google Scholar
Williams, M., Haywood, A. M., Harper, E. M., Johnson, A. L. A., Knowles, T., Leng, M. J., Lunt, D. L., Okamura, B., Taylor, P. D., and Zalasiewicz, J. 2009. Pliocene climate and seasonality in North Atlantic shelf seas. Philosophical Transactions of the Royal Society of London A 367:85108.Google Scholar