Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:52:54.528Z Has data issue: false hasContentIssue false

Sea level change and the area of shallow-marine habitat: implications for marine biodiversity

Published online by Cambridge University Press:  08 April 2016

Steven M. Holland*
Affiliation:
Department of Geology, The University of Georgia, Athens, Georgia 30602-2501. E-mail: stratum@uga.edu

Abstract

Analysis of a global elevation database to measure changes in shallow-marine habitat area as a function of sea level reveals an unexpectedly complicated relationship. In contrast to prevailing views, sea level rise does not consistently generate an increase in shelf area, nor does sea level fall consistently reduce shelf area. Different depth-defined habitats on the same margin will experience different changes in area for the same sea level change, and different margins will likewise experience different changes in area for the same sea level change. Simple forward models incorporating a species-area relationship suggest that the diversity response to sea level change will be largely idiosyncratic. The change in habitat area is highly dependent on the starting position of sea level, the amount and direction of sea level change, and the habitat and region in question. Such an idiosyncratic relationship between diversity and sea level reconciles the widespread evidence from the fossil record for a link between diversity and sea level change with the lack of quantitative support for such a relationship throughout the Phanerozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Algeo, T. J., and Wilkinson, B. H. 1991. Modern and ancient continental hypsometries. Journal of the Geological Society of London 148:643653.Google Scholar
Allen, P. A., and Allen, J. R. 2005. Basin analysis: principles and applications. Wiley-Blackwell, New York.Google Scholar
Arrhenius, O. 1921. Species and area. Journal of Ecology 9:9599.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Bayer, U., and McGhee, G. R. 1985. Evolution in marginal epicontinental basins: The role of phylogenetic and ecologic factors (Ammonite replacements in the German Lower and Middle Jurassic). Pp.164220inBayer, U.and Seilacher, A., eds. Sedimentary and evolutionary cycles. Springer, New York.CrossRefGoogle Scholar
Benton, M. J., and Emerson, B. C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:2340.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal of Paleontology 57:130.Google Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea level fluctuations. Palaios 13:241262.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp.285315inErwin, D. H.and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Chamberlin, T. C. 1909. Diastrophism as the ultimate basis of correlation. Journal of Geology 17:689693.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B. A., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.Google Scholar
Crampton, J. S., Foote, M., Cooper, R. A., Beu, A. G., and Peters, S. E. 2011. The fossil record and spatial structuring of environments and biodiversity in the Cenozoic of New Zealand. InSmith, A. B.and McGowan, A., eds. Comparing the rock and fossil records: implications for biodiversity. Geological Society of London, Special Publication 358:105122.Google Scholar
Dockery, D. T. III. 1986. Punctuated succession of Paleogene mollusks in the northern Gulf Coastal Plain. Palaios 1:582589.Google Scholar
Flessa, K. W., and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., and Huggett, J. M. 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157:745757.Google Scholar
Gray, J. S. 2001. Marine diversity: the paradigms in patterns of species richness examined. Scientia Marina 65:4156.Google Scholar
Hallam, A. 1984. Pre-Quaternary sea level changes. Annual Review of Earth and Planetary Sciences 12:205243.Google Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 13:152168.CrossRefGoogle Scholar
Hallam, A. 1989. The case for sea level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B 325:437455.Google Scholar
Hallam, A. 1992. Phanerozoic sea level changes. Columbia University Press, New York.Google Scholar
Hallock, P., and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389398.CrossRefGoogle Scholar
Hansen, T. A. 1987. Extinction of late Eocene to Oligocene molluscs: relationship to shelf area, temperature changes and impact events. Palaios 2:6975.Google Scholar
Harries, P. J. 2008. A reappraisal of the relationship between sea level and species richness. Pp.227261inHarries, P. J., ed. High-resolution approaches in stratigraphic paleontology. Springer, New York.CrossRefGoogle Scholar
Harrison, C. G. A., Brass, G. W., Saltzman, E. S., Sloan, J. L. II, Southam, J., and Whitman, J. M. 1981. Sea level variations, global sedimentation rates, and the hypsographic curve. Earth and Planetary Science Letters 54:116.Google Scholar
Harrison, C. G. A., Brass, G. W., Saltzman, E. S., and Sloan, J. L. II. 1983. Continental hypsography. Tectonics 2:357377.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. InErwin, D. H.and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):148168.Google Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6:397407.Google Scholar
Jablonski, D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Pp.335354inValentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J..Google Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions: a comparative approach. Pp.183229inElliot, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Jablonski, D. 2007. Scale and hierarchy in macroevolution. Paleontology 50:87109.Google Scholar
Jablonski, D., and Flessa, K. W. 1986. The taxonomic structure of shallow-water marine faunas: implications for Phanerozoic extinctions. Malacologia 27:4366.Google Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. Philosophical Transactions of the Royal Society of London B 284:277304.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1963. An equilibrium theory of insular zoogeography. Evolution 17:373387.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Monographs in Population Biology, Vol. 1. Princeton University Press, Princeton, N.J..Google Scholar
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36:179194.Google Scholar
McGhee, G. R. Jr, 1991. Extinction and diversification in the Devonian Brachiopoda of New York State: no correlation with sea level? Historical Biology 5:215227.Google Scholar
McGhee, G. R. Jr, 1992. Evolutionary biology of the Devonian Brachiopoda of New York State: no correlation with rate of change of sea level? Lethaia 25:165172.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
McKinney, M. L. 1998. On predicting biotic homogenization: species-area patterns in marine biota. Global Ecology and Biogeography Letters 7:297301.Google Scholar
McLachlan, A., and Dorvlo, A. 2007. Species-area relationships for sandy beach macrobenthos in the context of intertidal width. Oceanologia 49:9198.Google Scholar
McRoberts, C. A., and Aberhan, M. 1997. Marine diversity and sea level changes: numerical tests for association using Early Jurassic bivalves. Geologische Rundschau 86:160167.Google Scholar
Miller, A. I. 1997a. Coordinated stasis or coincident relative stability? Paleobiology 23:155164.Google Scholar
Miller, A. I. 1997b. Comparative diversification dynamics among palaeocontinents during the Ordovician radiation. Geobios Mémoire Spécial 20:397406.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea level change. Science 310:12931298.Google Scholar
Moore, R. C. 1954. Evolution of late Paleozoic invertebrates in response to major oscillations of shallow seas. Bulletin of the Museum of Comparative Zoology at Harvard College 122:259286.Google Scholar
Neigel, J. E. 2003. Species-area relationships and marine conservation. Ecological Applications 13:S138S145.CrossRefGoogle Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 26:371385.Google Scholar
Newell, N. D. 1956. Catastrophism and the fossil record. Evolution 10:97101.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. InAlbritton, C. C. Jr., ed. Uniformity and simplicity: a symposium on the principle of the uniformity of nature. Geological Society of America Special Paper 89:6391.Google Scholar
Newell, N. D. 1971. An outline history of tropical organic reefs. American Museum Novitates 2465.Google Scholar
Paulay, G. 1990. Effects of late Cenozoic sea level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology 16:415434.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences of the United States of America 102:1232612331.Google Scholar
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology 33:165181.Google Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.Google Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-adjusted macroevolutionary history for Ordovician–Early Silurian crinoids. Paleobiology 34:104116.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Petersen, K. D., Nielsen, S. B., Clausen, O. R., Stephenson, R., and Gerya, T. 2010. Small-scale mantle convection produces stratigraphic sequences in sedimentary basins. Science 329:827830.CrossRefGoogle ScholarPubMed
R Development Core Team. 2011. R: a language and environment for statistical computing, Version 2.13.0. R Foundation for Statistical Computing, Vienna.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 4:115.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. D. 1998. Marine latitudinal diversity gradients: Tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Schaaf, A. 1996. Sea level changes, continental shelf morphology, and global paleoecological constraints in the shallow benthic realm: a theoretical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 121:259271.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Simberloff, D. 1974. Permo-Triassic extinctions: effects of an area on biotic distributions. Journal of Geology 82:267274.CrossRefGoogle Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A. 2001. Sea level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1984a. Marine mass extinction: a dominant role for temperature. Pp.69117inNitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M. 1984b. Temperature and biotic crises in the marine realm. Geology 12:205208.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.Google Scholar
Valentine, J. W., and Jablonski, D. 1991. Biotic effects of sea level change: the Pleistocene test. Journal of Geophysical Research 96(B4):68736878.Google Scholar
Wessel, P., and Smith, W. H. F. 1998. New, improved version of Generic Mapping Tools released. EOS, Transactions of the American Geophysical Union 79:579.Google Scholar
Wise, K. P., and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology 7:394399.CrossRefGoogle Scholar
Wyatt, A. R. 1984. Relationship between continental area and elevation. Nature 311:370372.Google Scholar
Wyatt, A. R. 1987. Shallow water areas in space and time. Journal of the Geological Society of London 144:115120.CrossRefGoogle Scholar
Wyatt, A. R. 1995. Late Ordovician extinctions and sea level change. Journal of the Geological Society, London 152:899902.Google Scholar