Published online by Cambridge University Press: 08 February 2016
Factor analysis of morphometric data from fossil and recent Archaeogastropoda reveals that there has been a progressive reduction in the variety of archaeogastropod shell shapes through time. High and low spired genera have slowly disappeared while equidimensional forms, which have always been the most common, have become even more abundant. The taxonomic manifestation of this trend has long been appreciated and involves: 1) the extinction of most of the Pleurotomariacea, the Euomphalacea, Trochonematacea, and several other superfamilies, which collectively comprise most of the variation in shape among early archaeogastropods, and 2) the proliferation of the primarily equidimensional Trochacea and Neritacea. I suggest that this macroevolutionary trend may be explained by the general process I refer to as “stabilizing species selection.” More specifically, I suggest that the mechanism of stabilizing species selection in the case presented here may have been differential rates of origination.
I believe that the innovative concept of species selection has been burdened by the adherence of its advocates to the idea that differential extinction is its primary mechanism. This preference for differential extinction is rooted in our emphasis upon differential mortality in microevolution and is not based upon data of macroevolutionary change. I argue that differential origination may be as important as differential extinction in directing macroevolutionary change and that demographical and autecological properties of species may be its agents. Recognition of the importance of differential origination will have an important impact upon our concept of the relationship between adaptation and the evolutionary process.