Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T19:05:07.261Z Has data issue: false hasContentIssue false

Taxonomic and evolutionary pattern revisions resulting from geometric morphometric analysis of Pennsylvanian Neognathodus conodonts, Illinois Basin

Published online by Cambridge University Press:  30 August 2018

Alexander N. Zimmerman
Affiliation:
1001 East 10th Street, Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana 47405-140U.S.A. E-mail: alexzimm@indiana.edu
Claudia C. Johnson
Affiliation:
1001 East 10th Street, Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana 47405-140U.S.A. E-mail: alexzimm@indiana.edu
P. David Polly
Affiliation:
1001 East 10th Street, Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana 47405-140U.S.A. E-mail: alexzimm@indiana.edu

Abstract

Conodont fossils are highly valuable for Paleozoic biostratigraphy and for interpreting evolutionary change, but identifying and describing conodont morphologies, and characterizing gradual shape variation remain challenging. We used geometric morphometric (GM) analysis to conduct the first landmark-based morphometric analysis of the biostratigraphically useful conodont genus Neognathodus. Our objective is to assess whether previously defined morphotype groups are reliably distinct from one another. As such, we reevaluate patterns of morphologic change in Neognathodus P1elements, perform maximum-likelihood tests of evolutionary modes, and construct novel, GM-based biozonations through a Desmoinesian (Middle Pennsylvanian) section in the Illinois Basin. Our GM results record the entire spectrum of shape variability among Neognathodus morphotypes, thus alleviating the problem of documenting and classifying gradual morphologic transitions between morphotypes. Statistically distinct GM groups support previously established classifications of N. bassleri, N. bothrops, and N. roundyi. Statistically indistinct pairs of GM groups do not support literature designations of N. medadultimus and N. medexultimus, and N. dilatus and N. metanodosus, and we synonymize each pair. Maximum-likelihood tests of evolutionary modes provide the first statistical assessment of Neognathodus evolutionary models in the Desmoinesian. The most likely evolutionary models are an unbiased random walk or a general random walk. We name four distinct biozones through the Desmoinesian using GM results, and these align with previous biozonation structure based on the Neognathodus Index (NI), illustrating that Neognathodus-based biostratigraphic correlations would not change between GM or NI methods. The structural similarity between both biozonations showcases that determining GM-based biozones is not redundant, as this comparison validates using landmark-based GM work to construct viable biozonations for subsequent stratigraphic correlations. Although this study is limited to the Illinois Basin, our quantitative methodology can be applied broadly to test taxonomic designations of additional genera, interpret statistically robust evolutionary patterns, and construct valid biozones for this significant chordate group.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.Google Scholar
Aldridge, R. J., and Purnell, M. A.. 1996. The conodont controversies. Trends in Ecology and Evolution 11:4634668.Google Scholar
Allmon, W. D. 2013. Species, speciation and palaeontology up to the Modern Synthesis: persistent themes and unanswered questions. Palaeontology 56:11991223.Google Scholar
Anderson, D. R., Burnham, K. P., and Thompson, W. L.. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64:912923.Google Scholar
Barrick, J. E., and Boardman, D. R. II. 1989. Stratigraphic distribution of morphotypes of Idiognathodus and Streptognathodus in Missourian-lower Virgilian strata, north-central Texas. Pp. 167–188 in D. R. Boardman II, J. E. Barrick, J. M. Cocke, and M. K. Nestall, eds. Middle and Late Pennsylvanian chronostratigraphic boundaries in north-central Texas: glacial-eustatic events, biostratigraphy, and paleoecology, a guidebook with contributed papers, Part II. Contributed papers. Texas Tech University, Lubbock, Tex.Google Scholar
Barrick, J. E., Boardman, D. R. II, and Heckel, P. H.. 1996. Biostratigraphy across the Desmoinesian–Missourian boundary in North America Midcontinent, USA: -mplications for defining the Middle–Upper Pennsylvanian boundary. IUGS Subcommision on Carboniferous Stratigraphy 34:161175.Google Scholar
Barrick, J. E., Lambert, L. L., Heckel, P. H., and Boardman, D. R. II. 2004. Pennsylvanian conodont zonation for Midcontinent North America. Revista Espanola de Micropaleontologia 36:231250.Google Scholar
Boardman, D. R. II, Heckel, P. H., Barrick, J. E., Nestall, M. K., and Peppers, R. A.. 1990. Middle–Upper Pennsylvanian chronostratigraphic boundary in the Midcontinent region of North America. Pp. 319337 in P. L. Brenckle and W. L. Manger, eds. Intercontinental correlation and division of the Carboniferous System. Courier Forschungsinstitut Senckenberg, Frankfurt.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York.Google Scholar
Bookstein, F. L. 2013. Random walk as a null model for high-dimensional morphometrics of fossil series: geometrical considerations. Paleobiology 39:5274.Google Scholar
Brown, L. M., and Rexroad, C. B.. 2009. Conodont paleontology of the West Franklin Limestone Member of the Shelburn Formation (Pennsylvanian) in the southeastern part of the Illinois Basin. Indiana Geological Survey Special Report 68:34.Google Scholar
Brown, L. M., Rexroad, C. B., Eggert, D. L., and Horowitz, A. S.. 1991. Conodont paleontology of the Providence Limestone Member of the Dugger Formation (Pennsylvanian, Desmoinesian) in the southern part of the Illinois Basin. Journal of Paleontology 65:945957.Google Scholar
Brown, L. M., Rexroad, C. B., and Zimmerman, A. N.. 2013. Conodont biostratigraphy of the Porvenir Formation (Pennsylvanian, Desmoinesian) in the southeastern Sangre de Cristo Mountains, New Mexico. Mountain Geologist 50:99119.Google Scholar
Brown, L. M., Rexroad, C. B., and Zimmerman, A. N.. 2016. Conodont biostratigraphy of the Alum Cave Limestone Member of the Dugger Formation (Pennsylvanian, Desmoinesian), southwestern Indiana. Indiana Geological Survey Occasional Paper 72:25.Google Scholar
Cecil, C. B. 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliclastic rocks. Geology 18:533536.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J. X.. 2013. The ICS international chronostratigraphic chart. International Commission on Stratigraphy Episodes 36:199204.Google Scholar
Donoghue, P. C., Purnell, M. A., and Aldridge, R. J.. 1998. Conodont anatomy, chordate phylogeny and vertebrate classification. Lethaia 31:211219.Google Scholar
Donoghue, P. C., Sansom, I. J., and Downs, J. P.. 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalizationof skeletal development. Journal of Experimental Zoology and Molecular Developmental Evolution 306:117.Google Scholar
Falcon-Lang, H. J., and DiMichele, W. A.. 2010. What happened to the coal forests during the Pennsylvanian glacial phases? Palaios 25:611617.Google Scholar
Falcon-Lang, H. J., Heckel, P. H., DiMichele, W. A., Blake, B. M. J., Easterday, C. R., Eble, C. F., Elrick, S., Gastaldo, R. A., Greb, S. F., Martino, R. L., Nelson, W. J., Pfefferkorn, H. W., Phillips, T. L., and Rosscoe, S. J.. 2011. No major stratigraphic gap exists near the middle–upper Pennsylvanian (Desmoinesian–Missourian) boundary in North America. Palaios 26:125139.Google Scholar
Ferm, J. C., Horne, J. C., Swinchatt, J. P., and Whaley, P. W.. 1971. Carboniferous depositional environments in northeastern Kentucky. Geological Society of Kentucky, Lexington, Ky.Google Scholar
George, T. N. 1956. Biospecies, chronospecies, and morphospecies. Pp. 1731 in P. C. Sylvester-Bradley, ed. The species concept in paleontology. Systematics Association, London.Google Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology 11:2741.Google Scholar
Girard, C., and Renaud, S.. 2011. The species concept in a long-extinct fossil group, the conodonts. Comptes Rendus Palevol 10:107115.Google Scholar
Girard, C., Renaud, S., and Korn, D.. 2004a. Step-wise morphological trends in fluctuating environments: evidence in the Late Devonian conodont genus Palmatolepis . Geobios 37:404415.Google Scholar
Girard, C., Renaud, S., and Serayet, A.. 2004b. Morphological variation of Palmatolepis Devonian conodont: species versus genera. Comptes Rendus Palevol 3:18.Google Scholar
Girard, C., Renaud, S., and Feist, R.. 2007. Morphometrics of the Late Devonian conodont genus Palmatolepis: phylogenetic, geographical and ecological contributions of a generic approach. Journal of Micropalaeontology 26:6172.Google Scholar
Gray, H. H., Ault, C. H., Keller, S. J., and Harper, D.. 2010. Bedrock geology of Indiana. Indiana Geological Survey, Bloomington, Ind. Google Scholar
Grayson, R. C. Jr., Trice, E. L. III, and Westergaard, E. H.. 1985. Significance of some middle Atokan to early Missourian conodont faunas from the Llano Uplift and Colorado River Valley, Texas. Southwest Section American Association of Petroleum Geologists Transactions, pp. 117131.Google Scholar
Gunnell, F. H. 1931. Conodonts from the Fort Scott limestone of Missouri. Journal of Paleontology 5:244252.Google Scholar
Hammer, O., and Harper, D. A.. 2008. Palaeontological data analysis. Wiley-Blackwell, Oxford.Google Scholar
Harris, R. W., and Hollingsworth, R. V.. 1933. New Pennsylvanian conodonts from Oklahoma. American Journal of Science 25:193204.Google Scholar
Heckel, P. H. 1991. Lost Branch Formation and revision of upper Desmoinesian stratigraphy along Midcontinent outcrop belt. Kansas Geological Survey Geology Series 4:67.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Jacobson, R. J. 2000. Pennsylvanian rocks in Illinois. Illinois State Geological Survey, Champaign, Ill.Google Scholar
Joachimski, M. M., von Bitter, P. H., and Buggisch, W.. 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 34:277280.Google Scholar
Jones, D. 2009. Directional evolution in the conodont Pterospathodus. Paleobiology 35:413431.Google Scholar
Jones, D., and Purnell, M. A.. 2007. A new semi-automatic morphometric protocol for conodonts and a preliminary taxonomic application. Pp. 239259 in N. MacLeod, ed. Automated taxon identifications in systematics. CRC Press (for Systematics Association), London.Google Scholar
Klapper, G., and Foster, C. T.. 1986. Quantification of outlines in Frasnian (Upper Devonian) platform conodonts. Canadian Journal of Earth Science 23:12141222.Google Scholar
Klapper, G., and Foster, C. T.. 1993. Shape analysis of Frasnian species of the Devonian condont genus Palmatolepis . Journal of Paleontology Memoir 32:135.Google Scholar
Lambert, L. L. 1992. Atokan and basal Desmoinesian conodonts from central Iowa, reference area for the Desmoinesian Stage. Oklahoma Geological Survey Circular 94:111123.Google Scholar
Mayr, E. 1957. Species concepts and definitions. Pp. 122 in E. Mayr, ed. The species problem. American Association for the Advancement of Science, Washington, D.C. Google Scholar
Mayr, E. 1996. What is a species, and what is not? Philosophy of Science 63:262277.Google Scholar
McKinney, M. L. 1990. Classifying and analyzing evolutionary trends. Pp. 2858 in K. J. McNamara, ed. Evolutionary trends. University of Arizona Press, Tucson, Ariz.Google Scholar
Merrill, G. K. 1972. Taxonomy, phylogeny, and biostratigraphy of Neognathodus in Appalachian Pennsylvanian rocks. Journal of Paleontology 46:817829.Google Scholar
Merrill, G. K. 1975a. Pennsylvanian conodont biostratigraphy and paleoecology of northwestern Illinois. Microform Publication 3:100130.Google Scholar
Merrill, G. K. 1975b. Pennsylvanian conodonts of northwestern Illinois—summary and new systematics. Geology 3:721722.Google Scholar
Merrill, G. K. 1999. Neognathodus and the species concept in paleontology. Pp. 465473 in E. Serpagli and C. Corradini, eds. Studies on conodonts. Bollettino della Societa Paleontologica Italiana 37:465473.Google Scholar
Merrill, G. K., and Grayson, R. C. Jr. 1989. Conodont paleoecology of the type East Mountain Shale, north-central Texas. Pp. 147–154 in D. R. Boardman II, J. E. Barrick, J. M. Cocke, and M. K. Nestall, eds. Middle and Late Pennsylvanian chronostratigraphic boundaries in north-central Texas: glacial-eustatic events, biostratigraphy, and paleoecology, a guidebook with contributed papers, Part II. Contributed papers. Texas Tech University, Lubbock, Tex.Google Scholar
Murphy, M. A., and Cebecioglu, M. K.. 1987. Morphometric study of the genus Ancyrodelloides (Lower Devonian, Conodonts), central Nevada. Journal of Paleontology 61:583594.Google Scholar
Noger, M. C., McDowell, R. C., Grabowski, G. J., and Moore, S. L.. 1988. Geologic map of Kentucky. Kentucky Geological Survey, Lexington, Ky.Google Scholar
Novack-Gottshall, P. M. 2008. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.Google Scholar
Pander, C. H. 1865. Monographic der fossilen Fische des Silurischen Systems der Russisch-Baltischen Gouvernments. Saint Peterburg Académie des Sciences 1:91.Google Scholar
Piras, P., Sansalone, G., Marcolini, F., Tuveri, C., Arca, M., and Kotsakis, T.. 2012. Evolutionary trends and stasis in molar morphology of Rhagapodemus–Rhagamys lineage in the Pleistocene of Sardinia. Rivista Italiana di Paleontologia e Stratigrafia 118:535543.Google Scholar
Polly, P. D. 2016. Geometric morphometrics for Mathematica® package, Version 12.0. Indiana University, Bloomington, Ind.Google Scholar
Polly, P. D. 2018. Phylogenetics for Mathematica® package, Version 5.0. Indiana University, Bloomington, Ind.Google Scholar
Poulsen, C. J., Pollard, D., Montanez, I. P., and Rowley, D.. 2007. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology 35:771774.Google Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:788800.Google Scholar
Renaud, S., and Girard, C.. 1999. Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser crisis (Upper Devonian). Palaeogeography Palaeoclimatology Palaeoecology 146:1932.Google Scholar
Rexroad, C. B., Brown, L. M., and Weinrick, S. L.. 1996. Idiognathodus and the conodont biostratigraphy of the Holland Limestone Member, Staunton Formation (Pennsylvanian, Desmoinesian) from the Illinois Basin, U.S.A. Institute of Paleobiology, Polish Academy of Sciences: Sixth European Conodont Symposium (ECOS VI). Warsaw, Poland.Google Scholar
Rexroad, C. B., Brown, L. M., Devera, J., and Suman, R.. 1998. Conodont biostratigraphy and paleoecology of the Perth Limestone Member, Staunton Formation (Pennsylvanian) of the Illinois Basin, USA. Palaeontologia Polonica 58:247259.Google Scholar
Rexroad, C. B., Wade, J. A., Merrill, G. K., Brown, L. M., and Pagett, P.. 2001. Conodont biostratigraphy and depositional environments of the Mecca Quarry Shale Member and the Velpen Limestone Member of the Linton Formation (Pennsylvanian, Desmoinesian) in the eastern part of the Illinois Basin, USA. Indiana Geological Survey Special Report 63:19.Google Scholar
Rohlf, F. J. 2016a. tpsDig, Version 2.22. Stony Brook University, Stony Brook, N.Y.Google Scholar
Rohlf, F. J. 2016b. tpsUtil, Version 1.67. Stony Brook University, Stony Brook, N.Y.Google Scholar
Rohlf, F. J., and Slice, D.. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology 39:4059.Google Scholar
Roopnarine, P. D., Murphy, M. A., and Buening, N.. 2004. Microevolutionary dynamics of the Early Devonian conodont Wurmiella from the Great Basin of Nevada. Palaeontologia Electronica 8.2.31A.Google Scholar
Shaver, R. H., Ault, C. H., Burger, A. M., Carr, D. D., Droste, J. B., Eggert, D. L., Gray, H. H., Harper, D., Hasenmueller, N. R., Hasenmueller, W. A., Horowitz, A. S., Hutchison, H. C., Keith, B. D., Keller, S. J., Patton, J. B., Rexroad, C. B., and Weir, C. E.. 1986. Compendium of Paleozoic Rock-Unit Stratigraphy in Indiana—A Revision. Indiana Geological Survey, Bloomington, Ind.Google Scholar
Sloan, T. R. 2003. Results of a new outline-based method for the differentiation of conodont taxa. Pp. 389404 in R. Mawson and J. A. Taylor, eds. Second Australian Conodont Symposium (AUSCOS II). Courier Forschunginstitut Senckenberg, Orange, Australia.Google Scholar
Stauffer, C. R., and Plummer, H. J.. 1932. Texas Pennsylvanian conodonts and their stratigraphic relations. University of Texas Bulletin 3201:1350.Google Scholar
Sweet, W. C. 1988. The Conodonta: morphology, taxonomy, paleoecology and evolutionary history of a long-extinct animal phylum. Oxford Monographs on Geology and Geophysics 10:1211.Google Scholar
Sweet, W. C., and Donoghue, P. C.. 2001. Conodonts: past present, future. Journal of Paleontology 75:11741184.Google Scholar
Swezey, C. S. 2009. Regional stratigraphy and petroleum systems of the Illinois basin, U.S.A. USGS Scientific Investigations Map 3068. U.S. Geological Survey, Denver, Colo.Google Scholar
Tabor, N. J., and Poulsen, C. J.. 2008. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology 268:293310.Google Scholar
Trask, C. B., and Palmer, J. E.. 1986. Structural and depositional history of the Pennsylvanian System in the Illinois Basin. Pp. 63–78 in P. C. Lyons and C. L. Rice, eds. Paleoenvironmental and tectonic controls in coal-forming basins in the United States. Geological Society of America Special Paper 210.Google Scholar
Tri-State Committee on Correlation of the Pennsylvanian System Rock Units in the Illinois Basin. 2001. Toward a more uniform stratigraphic nomenclature for rock units (formations and groups) of the Pennsylvanian System in the Illinois Basin. Illinois Basin Consortium Illinois Basin Study 5. Illinois State Geological Survey, Indiana Geological Survey, Kentucky Geological Survey.Google Scholar
Van Bocxlaer, B., and Hunt, G.. 2013. Morphological stasis in an ongoing gastropod radiation from Lake Malawi. Proceedings of the National Academy of Sciences USA 110:1389213897.Google Scholar
Veevers, J. J., and Powell, C. M.. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive–regressive depositional sequences in Eurameric. Geological Society of America Bulletin 98:475487.Google Scholar
Vogt, L., Bartolomaeus, T., and Giribet, G.. 2009. The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26:301325.Google Scholar
Wolfram, . 2016. Mathematica®, Version 10.3. Wolfram Research, Champaign, Ill.Google Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L.. 2004. Geometric morphometrics for biologists: a primer. Elsevier Academic, San Diego, Calif.Google Scholar
Supplementary material: File

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 1

Download Zimmerman et al. supplementary material(File)
File 14.8 KB
Supplementary material: Image

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 2

Download Zimmerman et al. supplementary material(Image)
Image 10.7 MB
Supplementary material: File

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 3

Download Zimmerman et al. supplementary material(File)
File 14 KB
Supplementary material: File

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 4

Download Zimmerman et al. supplementary material(File)
File 16.4 KB
Supplementary material: File

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 5

Download Zimmerman et al. supplementary material(File)
File 14 KB
Supplementary material: File

Zimmerman et al. supplementary material

Zimmerman et al. supplementary material 6

Download Zimmerman et al. supplementary material(File)
File 22 KB