Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:25:30.712Z Has data issue: false hasContentIssue false

Taxonomic and numerical sufficiency in depth- and salinity-controlled marine paleocommunities

Published online by Cambridge University Press:  09 March 2017

Martin Zuschin
Affiliation:
Department of Paleontology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria. E-mail: martin.zuschin@univie.ac.at, rafal.nawrot@univie.ac.at
Rafał Nawrot
Affiliation:
Department of Paleontology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria. E-mail: martin.zuschin@univie.ac.at, rafal.nawrot@univie.ac.at
Mathias Harzhauser
Affiliation:
Department of Geology and Paleontology, Natural History Museum Vienna, Burgring 7, A-1010 Vienna, Austria. E-mail: mathias.harzhauser@nhm-wien.ac.at, oleg.mandic@nhm-wien.ac.at
Oleg Mandic
Affiliation:
Department of Geology and Paleontology, Natural History Museum Vienna, Burgring 7, A-1010 Vienna, Austria. E-mail: mathias.harzhauser@nhm-wien.ac.at, oleg.mandic@nhm-wien.ac.at
Adam Tomašových
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Bratislava 84005, Slovak Republic. E-mail: adam.tomasovych@savba.sk

Abstract

Numerical and taxonomic resolution of compositional data sets affects investigators’ abilities to detect and measure relationships between communities and environmental factors. We test whether varying numerical (untransformed, square-root- and fourth-root-transformed relative abundance and presence–absence data) and taxonomic (species, genera, families) resolutions reveals different insights into early to middle Miocene molluscan communities along bathymetric and salinity gradients. The marine subtidal has a more even species-abundance distribution, a higher number of rare species, and higher species:family and species:genus ratios than the three habitats—marine and estuarine intertidal, estuarine subtidal—with higher fluctuations in salinity and other physical parameters. Taxonomic aggregation and numerical transformation of data result in very different ordinations, although all habitats differ significantly from one another at all taxonomic and numerical levels. Rank correlations between species-level and higher-taxon, among-sample dissimilarities are very high for proportional abundance and decrease strongly with increasing numerical transformation, most notably in the two intertidal habitats. The proportion of variation explained by depth is highest for family-level data, decreases gradually with numerical transformation, and is higher in marine than in estuarine habitats. The proportion of variation explained by salinity is highest for species-level data, increases gradually with numerical transformation, and is higher in subtidal than in intertidal habitats. Therefore, there is no single best numerical and taxonomic resolution for the discrimination of communities along environmental gradients: the “best” resolution depends on the environmental factor considered and the nature of community response to it. Different numerical and taxonomic transformations capture unique aspects of metacommunity assembly along environmental gradients that are not detectable at a single level of resolution. We suggest that simultaneous analyses of community gradients at multiple taxonomic and numerical resolutions provide novel insights into processes responsible for spatial and temporal community stability.

Type
Methods in Paleobiology
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albano, P. G., Tomašových, A., Stachowitsch, M., and Zuschin, M.. 2016. Taxonomic sufficiency in a live-dead agreement study in a tropical setting. Palaeogeography, Palaeoclimatology, Palaeoecology 449:341348.Google Scholar
Amorosi, A., Rossi, V., Scarponi, D., Vaiani, S. C., and Ghosh, A.. 2014. Biosedimentary record of postglacial coastal dynamics: high-resolution sequence stratigraphy from the northern Tuscan coast (Italy). Boreas 43:939954.CrossRefGoogle Scholar
Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:3246.Google Scholar
Anderson, M. J., and Walsh, D. C. I.. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83:557574.Google Scholar
Anderson, M. J., Connell, S.D., Gillanders, B. M., Diebel, C. E., Bloms, W. M., Daunders, J. E., and Landers, T. J.. 2005. Relationships between taxonomic resolution and spatial scales of multivariate variation. Journal of Animal Ecology 74:636646.Google Scholar
Andrew, N. L., and Mapstone, B. D.. 1987. Sampling and the description of spatial pattern in marine ecology. Oceanography and Marine Biology 25:3990.Google Scholar
Balseiro, D. 2016. Compositional turnover and ecological changes related to the waxing and waning of glaciers during the late Paleozoic ice age in ice-proximal regions (Pennsylvanian, western Argentina). Paleobiology 42:335357.Google Scholar
Balseiro, D., Waisfeld, B. G., and Vaccari, N. E.. 2011. Paleoecological dynamics of Furongian (late Cambrian) trilobite-dominated communities from northwestern Argentina. Palaios 26:484499.Google Scholar
Bertasi, F., Colangelo, M. A., Colosio, F., Gregorio, G., Abbiati, M., and Ceccherelli, V. U.. 2009. Comparing efficacy of different taxonomic resolutions and surrogates in detecting changes in soft bottom assemblages due to coastal defence structures. Marine Pollution Bulletin 58:686694.CrossRefGoogle ScholarPubMed
Bevilacqua, S., Terlizzi, A., Claudet, J., Fraschetti, S., and Boero, F.. 2012. Taxonomic relatedness does not matter for species surrogacy in the assessment of community responses to environmental drivers. Journal of Applied Ecology 49:357366.Google Scholar
Bonelli, J. R., and Patzkowsky, M. E.. 2008. How are global patterns of faunal turnover expressed at regional scales? Evidence from the Upper Mississippian (Chesterian Series), Illinois Basin, USA. Palaios 23:760772.CrossRefGoogle Scholar
Bonuso, N., Newton, C. R., Brower, J. C., and Ivany, L. C.. 2002. Does coordinated stasis yield taxonomic and ecologic stability? Middle Devonian Hamilton Group of central New York. Geology 30:10551058.Google Scholar
Brett, C. E., and Baird, G. C.. 1995. Coordinated stasis and evolutionary ecology of Silurian–Devonian marine biotas in the Appalachian basin. Pp. 285315 in D. H. Erwin, and R. L. Anstey, eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brett, C. E., Bartholomew, A. J., and Baird, G. C.. 2007. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22:228244.Google Scholar
Chapman, M. G. 1998. Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution. Marine Ecology Progress Series 162:7178.Google Scholar
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.Google Scholar
Clarke, K. R., and Green, R. H.. 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series 46:213226.CrossRefGoogle Scholar
Dauvin, J.C., Gomez Gesteira, J. L., and Salvande Fraga, M.. 2003. Taxonomic sufficiency: an overview of its use in the monitoring of sublittoral benthic communities after oil spills. Marine Pollution Bulletin 46:552555.Google Scholar
De Biasi, A. M., Bianchi, C. N., and Morri, C.. 2003. Analysis of macrobenthic communities at different taxonomic levels: an example from an estuarine environment in the Ligurian Sea (NW Mediterranean). Estuarine, Coastal and Shelf Science 58:99106.Google Scholar
Dethier, M. N., and Schoch, G. C.. 2006. Taxonomic sufficiency in distinguishing natural spatial patterns on an estuarine shoreline. Marine Ecology Progress Series 306:4149.Google Scholar
Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M.-J., Jakomulska, A., Miriti, M., and Rosenberg, M. S.. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25:626640.Google Scholar
DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., and Bobe, R.. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology and Systematics 35:285322.Google Scholar
Ellis, D. 1985. Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin 16:459.Google Scholar
Ferraro, S. P., and Cole, F. A.. 1990. Taxonomic level and sample size sufficient for assessing pollution impacts on the Southern California Bight macrobenthos. Marine Ecology Progress Series 67:251262.Google Scholar
Foote, M. 2012. Evolutionary dynamics of taxonomic structure. Biology Letters 8:135138.Google Scholar
Forcino, F. L. 2012. Multivariate assessment of the required sample size for community paleoecological research. Palaeogeography, Palaeoclimatology, Palaeoecology 315–316:134141.Google Scholar
Forcino, F. L., Stafford, E. S., and Leighton, L. R.. 2012. Perception of paleocommunities at different taxonomic levels: how low must you go? Palaeogeography, Palaeoclimatology, Palaeoecology 365–366:4856.Google Scholar
Frost, T. M., Carpenter, S. R., and Kratz, T. K.. 1992. Choosing ecological indicators: effects of taxonomic aggregation on sensitivity to stress and natural variability. Pp. 215227 in D. H. McKenzie, D. E. Hyatt, and V. J. McDonald, eds. Ecological indicators, Vol. 1. Elsevier, London.Google Scholar
Gray, J. S., and Elliott, M.. 2009. Ecology of marine sediments. Oxford University Press, Oxford.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., and Jacquin, T.. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: P.-C. De Graciansky, J. Hardenbol, T. Jacquin, and P. R. Vail, eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Special Publications 60: 314.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio Region, USA. Palaios 22:392407.Google Scholar
Ivany, L. C., Brett, C. E., Wall, H. L. B., Wall, P. D., and Handley, J. C.. 2009. Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology 35:499524.Google Scholar
Karakassis, J., and Hatziyanni, E.. 2000. Benthic disturbance due to fish farming analyzed under different levels of taxonomic resolution. Marine Ecology Progress Series 203:247253.Google Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.Google Scholar
Kováč, M., Andreyeva-Grigorovich, A. S., Brzobohatý, R., Fodor, L., Harzhauser, M., Oszczypko, N., Pavelic, D., Rögl, D., F., Saftic, B., Sliva, L., and Stranik, Z.. 2004. Karpatian paleogeography, tectonics and eustatic changes. Pp. 4972 in R. Brzobohatý, I. Cicha, M. Kováč, and F. Rögl, eds. The Karpatian—a Lower Miocene stage of the Central Paratethys. Masaryk University, Brno, Czech Republic.Google Scholar
Kováč, M., Andreyeva-Grigorovich, A., Bajraktarevic, Z., Brzobohaty, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelic, D., Rögl, F., Saftic, B., Sliva, L., and Studencka, B.. 2007. Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica 58:579606.Google Scholar
Kowalewski, M., Wittmer, J. M., Dexter, T. A., Amorosi, A., and Scarponi, D.. 2015. Differential responses of marine communities to natural and anthropogenic changes. Proceedings of the Royal Society of London B 282:20142990.Google ScholarPubMed
Lasiak, T. 2003. Influence of taxonomic resolution, biological attributes and data transformations on multivariate comparisons of rocky macrofaunal assemblages. Marine Ecology Progress Series 250:2934.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.Google Scholar
Mandic, O., Harzhauser, M., Spezzaferri, S., and Zuschin, M.. 2002. The paleoenvironment of an early Middle Miocene Paratethys sequence in NE Austria with special emphasis on paleoecology of mollusks and foraminifera. Geobios Mémoire spécial 24:193206.Google Scholar
Musco, L., Mikac, B., Tataranni, M., Giangrande, A., and Terlizzi, A.. 2011. The use of coarser taxonomy in the detection of long-term changes in polychaete assemblages. Marine Environmental Research 71:131138.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2015. Vegan: community ecology package. R package, Version 2.2-1.Google Scholar
Olsgard, F., Somerfield, P. J., and Carr, M. R.. 1998. Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. Marine Ecology Progress Series 172:2536.Google Scholar
Pandolfi, J. M. 2001. Numerical and taxonomic scale of analysis in paleoecological data sets: Examples from neo-tropical Pleistocene reef coral communities. Journal of Paleontology 75:546563.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Rahel, F. J. 1990. The hierarchical nature of community persistence: a problem of scale. American Naturalist 136:328344.Google Scholar
R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235:167171.Google Scholar
Roy, K., Hunt, G., Jablonski, D., Krug, A. Z., and Valentine, J. W.. 2009. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London B 276:14851493.Google Scholar
Rögl, F. 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A:279310.Google Scholar
Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Haywood, A., Hunter, S. J., and Lieberman, B. S.. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society of London B 281:20141995.Google Scholar
Somerfield, P. J., and Clarke, K. R.. 1995. Taxonomic levels, in marine community studies, revisited. Marine Ecology Progress Series 127:113119.Google Scholar
Souza, G. B. G, and Barros, F.. 2015. Analysis of sampling methods of estuarine benthic macrofaunal assemblages: sampling gear, mesh size, and taxonomic resolution. Hydrobiologia 743:157174.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.Google Scholar
Strauss, P., Harzhauser, M., Hinsch, R., and Wagreich, M.. 2006. Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica 57:185197.Google Scholar
Tomašových, A., and Kidwell, S. M.. 2009a. Fidelity of variation in species composition and diversity partitioning by death assemblages: time averaging transfers diversity from beta to alpha levels. Paleobiology 35:94118.Google Scholar
Tomašových, A., and Kidwell, S. M.. 2009b. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:119145.Google Scholar
Tomašových, A., Dominici, S., Zuschin, M., and Merle, D.. 2014. Onshore–offshore gradient in metacommunity turnover emerges only over macroevolutionary time-scales. Proceedings of the Royal Society of London B 281:20141533.Google Scholar
Vanderklift, M. A., Ward, T. J., and Jacoby, C. A.. 1996. Effect of reducing taxonomic resolution on ordinations to detect pollution-induced gradients in macrobenthic infaunal assemblages. Marine Ecology Progress Series 136:137145.Google Scholar
Warwick, R. M. 1988. Effects on community structure of a pollutant gradient—introduction. Marine Ecology Progress Series 46:149.Google Scholar
Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385397.Google Scholar
Wiens, J. J., and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519539.Google Scholar
Wittmer, J. M., Dexter, T., Scarponi, D., Amorosi, A., and Kowalewski, M.. 2014. Quantitative bathymetric models for late Quaternary transgressive–regressive cycles of the Po Plain, Italy. Journal of Geology 122:649670.Google Scholar
Włodarska-Kowalczuk, M., and Kędra, M.. 2007. Surrogacy in natural patterns of benthic distribution and diversity: selected taxa versus lower taxonomic resolution. Marine Ecology Progress Series 351:5363.CrossRefGoogle Scholar
Wright, I. A., Chessman, B. C., Fairweather, P. G., and Benson, L. J.. 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Australian Journal of Ecology 20:142149.Google Scholar
Visaggi, C. C., and Ivany, L. C.. 2010. The influence of data selection and type of analysis on interpretation of temporal stability in Oligocene faunas of Mississippi. Palaios 25:769779.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O.. 2004a. Spatial variability within a single parautochthonous Paratethyan tidal flat deposit (Karpatian, Lower Miocene Kleinebersdorf, Lower Austria). Courier Forschungsinstitut Senckenberg 246:153168.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O.. 2004b. Taphonomy and palaeoecology of the Lower Badenian (Middle Miocene) molluscan assemblages at Grund (Lower Austria). Geologica Carpathica 55:117128.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O.. 2005. Influence of size-sorting on diversity estimates from tempestitic shell beds in the middle Miocene of Austria. Palaios 20:142158.Google Scholar
Zuschin, M., Harzhauser, M., and Sauermoser, K.. 2006. Patchiness of local species richness and its implication for large-scale diversity patterns: an example from the middle Miocene of the Paratethys. Lethaia 39:6578.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O.. 2007. The stratigraphic and sedimentologic framework of fine-scale faunal replacements in the middle Miocene of the Vienna Basin (Austria). Palaios 22:284295.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O.. 2011. Disentangling palaeodiversity signals from a biased sedimentary record: an example from the Early to Middle Miocene of Central Paratethys Sea. Pp. 123139 in A. McGowan, and A. B. Smith, eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358.Google Scholar
Zuschin, M., Harzhauser, M., Hengst, B., Mandic, O., and Roetzel, R.. 2014. Long-term ecosystem stability in a Lower Miocene estuary. Geology 42:710.Google Scholar