Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:40:46.993Z Has data issue: false hasContentIssue false

Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic

Published online by Cambridge University Press:  21 September 2020

Xu Dai
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan430074, China. E-mail: xudai@cug.edu.cn, haijunsong@cug.edu.cn
Haijun Song*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan430074, China. E-mail: xudai@cug.edu.cn, haijunsong@cug.edu.cn
*
*Corresponding author.

Abstract

Cosmopolitanism occurred recurrently during the geologic past, especially after mass extinctions, but the underlying mechanisms remain poorly known. Three theoretical models, not mutually exclusive, can lead to cosmopolitanism: (1) selective extinction in endemic taxa, (2) endemic taxa becoming cosmopolitan after the extinction and (3) an increase in the number of newly originated cosmopolitan taxa after extinction. We analyzed an updated occurrence dataset including 831 middle Permian to Middle Triassic ammonoid genera and used two network methods to distinguish major episodes of ammonoid cosmopolitanism during this time interval. Then, we tested the three proposed models in these case studies. Our results confirm that at least two remarkable cosmopolitanism events occurred after the Permian–Triassic and late Smithian (Early Triassic) extinctions, respectively. Partitioned analyses of survivors and newcomers revealed that the immediate cosmopolitanism event (Griesbachian) after the Permian–Triassic event can be attributed to endemic genera becoming cosmopolitan (model 2) and an increase in the number of newly originated cosmopolitan genera after the extinction (model 3). Late Smithian cosmopolitanism is caused by selective extinction in endemic taxa (model 1) and an increase in the number of newly originated cosmopolitan genera (model 3). We found that the survivors of the Permian–Triassic mass extinction did not show a wider geographic range, suggesting that this mass extinction is nonselective among the biogeographic ranges, while late Smithian survivors exhibit a wide geographic range, indicating selective survivorship among cosmopolitan genera. These successive cosmopolitanism events during severe extinctions are associated with marked environmental upheavals such as rapid climate changes and oceanic anoxic events, suggesting that environmental fluctuations play a significant role in cosmopolitanism.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.0k6djh9xj

References

Literature Cited

Antell, G. S., Kiessling, W., Aberhan, M., and Saupe, E. E.. 2020. Marine biodiversity and geographic distributions are independent on large scales. Current Biology 30:115121.CrossRefGoogle ScholarPubMed
Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U.. 2017. Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling. Solid Earth 8:361378.CrossRefGoogle Scholar
Benton, M. J. 2018. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Philosophical Transactions of the Royal Society of London A 376:20170076.Google ScholarPubMed
Bernardi, M., Petti, F. M., and Benton, M. J.. 2018. Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction. Proceedings of the Royal Society of London B 285:20172331.Google ScholarPubMed
Black, B. A., Neely, R. R., Lamarque, J.-F., Elkins-Tanton, L. T., Kiehl, J. T., Shields, C. A., Mills, M. J., and Bardeen, C.. 2018. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience 11:949954.CrossRefGoogle Scholar
Bond, D. P., and Wignall, P. B.. 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122:12651279.CrossRefGoogle Scholar
Brayard, A., and Bucher, H.. 2008. Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (south China): taxonomy and biochronology. Fossils and Strata 55:1184.Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T.. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography Palaeoclimatology Palaeoecology 239:374395.CrossRefGoogle Scholar
Brayard, A., Escarguel, G., and Bucher, H.. 2007. The biogeography of early Triassic ammonoid faunas: clusters, gradients, and networks. Geobios 40:749765.CrossRefGoogle Scholar
Brayard, A., Brühwiler, T., Bucher, H., and Jenks, J.. 2009a. Guodunites, a low-palaeolatitude and tran-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52:471481.CrossRefGoogle Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J.. 2009b. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.CrossRefGoogle Scholar
Brayard, A., Bylund, K. G., Jenks, J. F., Stephen, D. A., Olivier, N., Escarguel, G., Fara, E., and Vennin, E.. 2013. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss Journal of Palaeontology 132:141219.CrossRefGoogle Scholar
Brayard, A., Escarguel, G., Monnet, C., Jenks, J. F., and Bucher, H.. 2015. Biogeography of Triassic ammonoids. Pp. 163187 in Klug, C., Kruta, I., Korn, D., Mapes, R. H., and Baets, K. D., eds. Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Netherlands.CrossRefGoogle Scholar
Brayard, A., Jenks, J. F., and Bylund, K. G.. 2019. Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios 54:1336.CrossRefGoogle Scholar
Brosse, M., Brayard, A., Fara, E., and Neige, P.. 2013. Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. Journal of the Geological Society of London 170:225236.CrossRefGoogle Scholar
Brühwiler, T., Brayard, A., Bucher, H., and Guodun, K.. 2008. Griesbachian and Dienerian (Early Triassic) Ammonoid Faunas from northwestern Guangxi and southern Guizhou (south China). Palaeontology 51:11511180.CrossRefGoogle Scholar
Brühwiler, T., Bucher, H., Brayard, A., and Goudemand, N.. 2010a. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the northern Indian Margin. Palaeogeography Palaeoclimatology Palaeoecology 297:491501.CrossRefGoogle Scholar
Brühwiler, T., Bucher, H., and Goudemand, N.. 2010b. Smithian (Early Triassic) ammonoids from Tulong, south Tibet. Geobios 43:403431.CrossRefGoogle Scholar
Brühwiler, T., Bucher, H., Goudemand, N., and Galfetti, T.. 2012a. Smithian (Early Triassic) ammonoid faunas from exotic blocks from Oman: taxonomy and biochronology. Palaeontographica Abteilung A:13107.Google Scholar
Brühwiler, T., Bucher, H., and Krystyn, L.. 2012b. Middle and late Smithian (Early Triassic) ammonoids from Spiti, India. Special Papers in Palaeontology Series 88:115174.Google Scholar
Brühwiler, T., Bucher, H., Ware, D., Hermmann, E., Hochuli, P. A., Roohi, G., Rehman, K., and Yaseen, A.. 2012c. Smithian (Early Triassic) ammonoids from the Salt Range. Special Papers in Palaeontology Series 88:1114.Google Scholar
Burgess, S. D., Bowring, S., and Shen, S.-z.. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences USA 111:33163321.CrossRefGoogle ScholarPubMed
Burgess, S. D., Muirhead, J. D., and Bowring, S. A.. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications 8:164.CrossRefGoogle ScholarPubMed
Burman, S. G., Aronson, R. B., and van Woesik, R.. 2012. Biotic homogenization of coral assemblages along the Florida reef tract. Marine Ecology Progress Series 467:8996.CrossRefGoogle Scholar
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652655.CrossRefGoogle ScholarPubMed
Button, D. J., Lloyd, G. T., Ezcurra, M. D., and Butler, R. J.. 2017. Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nature Communications 8:733.CrossRefGoogle ScholarPubMed
Chen, Y., Jiang, H., Ogg, J. G., Zhang, Y., Gong, Y., and Yan, C.. 2020. Early–Middle Triassic boundary interval: Integrated chemo-bio-magneto-stratigraphy of potential GSSPs for the base of the Anisian Stage in South China. Earth and Planetary Science Letters 530:115863.CrossRefGoogle Scholar
Clarkson, M., Kasemann, S., Wood, R., Lenton, T., Daines, S., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S., and Tipper, E.. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229232.CrossRefGoogle ScholarPubMed
Clarkson, M. O., Wood, R. A., Poulton, S. W., Richoz, S., Newton, R. J., Kasemann, S. A., Bowyer, F., and Krystyn, L.. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications 7:12236.CrossRefGoogle ScholarPubMed
Dai, X., Song, H., Brayard, A., and Ware, D.. 2019. A new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology 93:4871.CrossRefGoogle Scholar
Dunhill, A. M., and Wills, M. A.. 2015. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. Nature Communications 6:7980.CrossRefGoogle Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567570.CrossRefGoogle ScholarPubMed
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weisset, H., and Vigran, J. O.. 2007. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.CrossRefGoogle Scholar
Goudemand, N., Orchard, M. J., Bucher, H., and Jenks, J.. 2012. The elusive origin of Chiosella timorensis (Conodont Triassic). Geobios 45:199207.CrossRefGoogle Scholar
Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J. A., and Williams, I. S.. 2019. Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian–Spathian biotic crisis. Earth-Science Reviews 195:169178.CrossRefGoogle Scholar
Grasby, S. E., Beauchamp, B., Embry, A., and Sanei, H.. 2013. Recurrent Early Triassic ocean anoxia. Geology 41:175178.CrossRefGoogle Scholar
Guex, J., Hungerbühler, A., Jenks, J. F., O'Dogherty, L., Atudorei, V., Taylor, D. G., Bucher, H., and Bartolini, A.. 2010. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie de Lausanne 49:181.Google Scholar
Hammer, Ø., Harper, D. A., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.Google Scholar
Harries, P. J., Kauffman, E. G., and Hansen, T. A.. 1996. Models for biotic survival following mass extinction. Pp. 4160 in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society Special Publication 102.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J. F., and Hautmann, M.. 2016. Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Papers in Palaeontology 2:155188.CrossRefGoogle Scholar
Jattiot, R., Bucher, H., Brayard, A., Brosse, M., Jenks, J. F., and Bylund, K. G.. 2017. Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontographica Abteilung A 309:189.CrossRefGoogle Scholar
Jattiot, R., Brayard, A., Bucher, H., Vennin, E., Caravaca, G., Jenks, J. F., Bylund, K. G. and Escarguel, G.. 2018. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters. Palaeontology 61:881904.CrossRefGoogle Scholar
Jattiot, R., Bucher, H., and Brayard, A.. 2020. Smithian (Early Triassic) ammonoid faunas from Timor: taxonomy and biochronology. Palaeontographica Abteilung A 317:1137.CrossRefGoogle Scholar
Jenks, J. F., and Brayard, A.. 2018. Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: taxonomy, biostratigraphy and biogeography. New Mexico Museum of Natural History and Science Bulletin 78:1175.Google Scholar
Jenks, J. F., Monnet, C., Balini, M., Brayard, A., and Meier, M.. 2015. Biostratigraphy of Triassic ammonoids. Pp. 329388 in Klug, C., Kruta, I., Korn, D., Mapes, R. H., and Baets, K. D., eds. Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Netherlands.CrossRefGoogle Scholar
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y.. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195198.CrossRefGoogle Scholar
Kiel, S. 2017. Using network analysis to trace the evolution of biogeography through geologic time: a case study. Geology 45:711714.Google Scholar
Kiessling, W., and Aberhan, M.. 2007. Geographical distribution and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.CrossRefGoogle Scholar
Kivelä, M., Arnaud-Haond, S., and Saramaki, J.. 2015. EDENetworks: a user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15:117122.CrossRefGoogle ScholarPubMed
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.CrossRefGoogle Scholar
Kocsis, A. T., Reddin, C. J., and Kiessling, W.. 2018. The biogeographical imprint of mass extinctions. Proceedings of the Royal Society of London B 285:20180232.Google ScholarPubMed
Korn, D., Hopkins, M. J., and Walton, S. A.. 2013. Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:27952810.Google ScholarPubMed
Korn, D., Ghaderi, A., Leda, L., Schobben, M., and Ashouri, A. R.. 2016. The ammonoids from the Late Permian Paratirolites Limestone of Julfa (east Azerbaijan, Iran). Journal of Systematic Palaeontology 14:841890.CrossRefGoogle Scholar
Korn, D., Ghaderi, A., Tabrizi, N. G.. 2019. Early Changhsingian (Late Permian) ammonoids from NW Iran. Neues Jahrbuch Fur Geologie Und Palaontologie-abhandlungen 293:3756.CrossRefGoogle Scholar
Leonova, T. B. 2002. Permian ammonoids: classification and phylogeny. Paleontological Journal 36:S1S114.Google Scholar
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., and McGill, B.. 2015. Rapid biotic homogenization of marine fish assemblages. Nature Communications 6:8405.CrossRefGoogle ScholarPubMed
McGowan, A. J. 2004. Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology 32:665668.CrossRefGoogle Scholar
McGowan, A. J. 2005. Ammonoid recovery from the Late Permian mass extinction event. Comptes Rendus Palevol 4:517530.CrossRefGoogle Scholar
McKinney, M. L., and Lockwood, J. L.. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14:450453.CrossRefGoogle ScholarPubMed
Monnet, C., Bucher, H., Brayard, A., and Jenks, J. F.. 2013. Globacrochordiceras gen. nov (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Fossil Record 16:197215.CrossRefGoogle Scholar
Muto, S., Takahashi, S., Yamakita, S., Suzuki, N., Suzuki, N., and Aita, Y.. 2018. High sediment input and possible oceanic anoxia in the pelagic Panthalassa during the latest Olenekian and early Anisian: insights from a new deep-sea section in Ogama, Tochigi, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 490:687707.CrossRefGoogle Scholar
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H.. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.CrossRefGoogle ScholarPubMed
Petsios, E., and Bottjer, D. J.. 2016. Quantitative analysis of the ecological dominance of benthic disaster taxa in the aftermath of the end-Permian mass extinction. Paleobiology 42:380393.CrossRefGoogle Scholar
Peybernes, C., Chablais, J., Onoue, T., Escarguel, G., and Martini, R.. 2016. Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the Late Triassic: insights from reef limestone of the Sambosan Accretionary Complex, Shikoku, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 3151.CrossRefGoogle Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.CrossRefGoogle Scholar
Renne, P. R., Zhang, Z. C., Richards, M. A., Black, M. T., and Basu, A. R.. 1995. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 269:14131416.CrossRefGoogle ScholarPubMed
Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G., and Hoey, A. S.. 2018. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Global Change Biology 24:31173129.CrossRefGoogle ScholarPubMed
Rodland, D. L., and Bottjer, D. J.. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95101.2.0.CO;2>CrossRefGoogle Scholar
Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., Bruehwiler, T., Brinkmann, W., and Bucher, H.. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6:5760.CrossRefGoogle Scholar
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.. 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research 26:675683.CrossRefGoogle Scholar
Scotese, C. R. 2014. PALEOMAP Atlas for ArcGIS (Jurassic and Triassic), Vol. 3, maps 43–48, and PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic), Vol. 4, maps 49–52, in Atlas of Middle & Late Permian and Triassic paleogeographic maps. Mollweide Projection, PALEOMAP Project, Evanston, Ill.Google Scholar
Shen, S., Ramezani, J., Chen, J., Cao, C., Erwin, D. H., Zhang, H., Lei, X., C, S. S. D.. Henderson, M., Zheng, Q., Bowring, S. A., Wang, Y., Li, X., Wang, X., Yuan, D., Zhang, Y., Mu, L., Wang, J., and Wu, Y.. 2018. A sudden end-Permian mass extinction in south China. Geological Society of America Bulletin 131:205223.CrossRefGoogle Scholar
Shigeta, Y., Zakharov, Y. D., Maeda, H., and Popov, A. M.. 2009. The Lower Triassic system in the Abrek Bay area, south Primorye, Russia. National Museum of Nature and Science, Tokyo.Google Scholar
Sidor, C. A., Vilhena, D. A., Angielczyk, K. D., Huttenlocker, A. K., Nesbitt, S. J., Peecook, B. R., Steyer, J. S., Smith, R. M. H., and Tsuji, L. A.. 2013. Provincialization of terrestrial faunas following the end-Permian mass extinction. Proceedings of the National Academy of Sciences USA 110:81298133.CrossRefGoogle ScholarPubMed
Smyshlyaeva, O. P., and Zakharov, Y. D.. 2013. New members of the family flemingitidae (Ammonoidea) from the Lower Triassic of South Primorye. Paleontological Journal 47:247255.CrossRefGoogle Scholar
Song, H., Wignall, P. B., Tong, J., Bond, D. P., Song, H., Lai, X., Zhang, K., Wang, H., and Chen, Y.. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353:1221.CrossRefGoogle Scholar
Song, H., Wignall, P. B., Tong, J., Song, H., Chen, J., Chu, D., Tian, L., Luo, M., Zong, K., Chen, Y., Lai, X., Zhang, K., and Wang, H.. 2015. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth and Planetary Science Letters 424:140147.CrossRefGoogle Scholar
Song, H., Tong, J., Wignall, P. B., Luo, M., Tian, L., Song, H., Huang, Y., and Chu, D.. 2016. Early Triassic disaster and opportunistic foraminifers in south China. Geological Magazine 153:298315.CrossRefGoogle Scholar
Song, H., Wignall, P. B., and Dunhill, A. M.. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances 4:eaat5091.CrossRefGoogle ScholarPubMed
Song, H., Huang, S., Jia, E., Dai, X., Wignall, P. B., Dunhill, A. M.. 2020. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proceedings of the National Academy of Sciences USA 117:1757817583.CrossRefGoogle ScholarPubMed
Song, H. Y., Du, Y., Algeo, T. J., Tong, J. N., Owens, J. D., Song, H. J., Tian, L., Qiu, H., Zhu, Y., and Lyons, T. W.. 2019. Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-early Triassic). Earth-Science Reviews 195:133146.CrossRefGoogle Scholar
Stanley, S. M. 2009. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proceedings of the National Academy of Sciences USA 106:1526415267.CrossRefGoogle ScholarPubMed
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366370.CrossRefGoogle ScholarPubMed
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., and Araujo, M. B.. 2011. Consequences of climate change on the tree of life in Europe. Nature 470:531534CrossRefGoogle ScholarPubMed
Tong, J., Zuo, J., and Chen, Z. Q.. 2007. Early Triassic carbon isotope excursions from south China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geological Journal 42:371389.Google Scholar
Tozer, E. T. 1981. Triassic Ammonoidea: geographic and stratigraphic distribution. Pp. 397431. in House, M. R., and Senior, J. R., eds. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association, London.Google Scholar
Tozer, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada, Ottawa.CrossRefGoogle Scholar
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.CrossRefGoogle ScholarPubMed
Ware, D., Jenks, J. F., Hautmann, M., and Bucher, H.. 2011. Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss Journal of Geosciences 104:161181.CrossRefGoogle Scholar
Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E., and Brühwiler, T.. 2015. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 440:363373.CrossRefGoogle Scholar
Ware, D., Bucher, H., Brühwiler, T., and Krystyn, L.. 2018a. Dienerian (Early Triassic) ammonoids from Spiti (Himachal Pradesh, India). Fossil and Strata 63:177241.CrossRefGoogle Scholar
Ware, D., Bucher, H., Brühwiler, T., Schneebeli-Hermann, E., Hochuli, P. A., Roohi, G., Rehman, K., and Yaseen, A.. 2018b. Griesbachian and Dienerian (Early Triassic) ammonoids from the Salt Range, Pakistan. Fossil and Strata 63:11175.CrossRefGoogle Scholar
Yacobucci, M. M. 2018. Postmortem transport in fossil and modern shelled cephalopods. PeerJ 6:e5909.CrossRefGoogle ScholarPubMed
Yin, H., and Song, H.. 2013. Mass extinction and Pangea integration during the Paleozoic–Mesozoic transition. Science China-Earth Sciences 56:17911803.CrossRefGoogle Scholar
Zhang, F., Romaniello, S. J., Algeo, T. J., Lau, K. V., Clapham, M. E., Richoz, S., Herrmann, A. D., Smith, H., Horacek, M., and Anbar, A. D.. 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances 4:e1602921.CrossRefGoogle ScholarPubMed
Zhang, L., Orchard, M. J., Brayard, A., Algeo, T. J., Zhao, L., Chen, Z.-Q., and Lyu, Z.. 2019. The Smithian/Spathian boundary (late Early Triassic): a review of ammonoid, conodont, and carbon-isotopic criteria. Earth-Science Reviews 195:736.CrossRefGoogle Scholar
Zhao, J., Liang, X., and Zheng, Z.. 1978. Late Permian cephalopods from south China. Palaeontologia Sinica, Series B 12:1–194.Google Scholar