Published online by Cambridge University Press: 08 April 2016
Phylogenetic patterns of trilobite clades were used to deduce biogeographic patterns during the Middle Devonian, a time of active plate collision between North America (Laurentia) and other plates, coincident with several major episodes of sea-level rise and fall. The mapping of biogeographic states onto phylogenies for asteropyginid and proetid trilobites indicated that during their history these trilobite clades often shifted the areas they occupied, and also underwent vicariant differentiation, followed by range expansion, followed by subsequent vicariance. Biogeographic patterns in these individual phylogenies were evaluated and synthesized using a modified version of Brooks Parsimony Analysis, which is discussed. This method makes it possible using cladistic methods to distinguish between episodes of vicariance and episodes of dispersal. Two types of dispersal are recognized herein: (1) the individualistic responses of certain taxa in a single clade that cannot be generalized, i.e., traditional ad hoc dispersal, and (2) those patterns of congruent range expansion that are replicated across several clades. The latter are not treated as true dispersal, expansion of a taxon's range over a barrier accompanied by diversification, but rather as a result of the temporary removal of barriers to marine taxa, due either to relative sea-level rise or to the collision of formerly disjunct plates. These are interpreted as changes in the structure of areas, and this type of dispersal is referred to as geo-dispersal. Geo-dispersal was found to have occurred in the Middle Devonian trilobite fauna of Eastern North America.
Biogeographic analysis indicated that Eastern North America is a strongly supported area, with the Appalachian and Michigan Basins as sister areas. Armorica and the Canadian Arctic are also sister areas. Congruence was found between area cladograms produced by vicariance and dispersal analyses for Middle Devonian trilobites, suggesting that in some cases the geological processes governing vicariance, such as sea-level changes, were the same as those that caused dispersal.