Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T00:23:05.311Z Has data issue: false hasContentIssue false

The use of MSR (Minimum Sample Richness) for sample assemblage comparisons

Published online by Cambridge University Press:  08 April 2016

Kenny J. Travouillon
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement UMR 5276 CNRS/Université Lyon, 1/ENS-Lyon; Université Claude Bernard Lyon 1, 27-43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia. E-mail: kennytravouillon@hotmail.com
Gilles Escarguel
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement UMR 5276 CNRS/Université Lyon, 1/ENS-Lyon; Université Claude Bernard Lyon 1, 27-43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
Serge Legendre
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement UMR 5276 CNRS/Université Lyon, 1/ENS-Lyon; Université Claude Bernard Lyon 1, 27-43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
Michael Archer
Affiliation:
School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia
Suzanne J. Hand
Affiliation:
School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia

Abstract

Minimum Sample Richness (MSR) is defined as the smallest number of taxa that must be recorded in a sample to achieve a given level of inter-assemblage classification accuracy. MSR is calculated from known or estimated richness and taxonomic similarity. Here we test MSR for strengths and weaknesses by using 167 published mammalian local faunas from the Paleogene and early Neogene of the Quercy and Limagne area (Massif Central, southwestern France), and then apply MSR to 84 Oligo-Miocene faunas from Riversleigh, northwestern Queensland, Australia. In many cases, MSR is able to detect the assemblages in the data set that are potentially too incomplete to be used in a similarity-based comparative taxonomic analysis. The results show that the use of MSR significantly improves the quality of the clustering of fossil assemblages. We conclude that this method can screen sample assemblages that are not representative of their underlying original living communities. Ultimately, it can be used to identify which assemblages require further sampling before being included in a comparative analysis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aguilar, J.-P., Legendre, S., and Michaux, J., eds. 1997. Actes du congrès BiochroM'97, Mémoires et Travaux de l'Ecole Pratique des Hautes Etudes, Institut de Montpellier 21.Google Scholar
Andrews, P. 2006. Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology 241:572589.Google Scholar
Archer, M., Arena, D. A., Bassarova, M., Beck, R. M. D., Black, K., Boles, W. E., Brewer, P., Cooke, B. N., Crosby, K., Gillespie, A., Godthelp, H., Hand, S. J., Kear, B. P., Louys, J., Morrell, A., Muirhead, J., Roberts, K. K., Scanlon, J. D., Travouillon, K. J., and Wroe, S. 2006. Current status of species-level representation in faunas from selected fossil localities in the Riversleigh World Heritage Area, northwestern Queensland. Alcheringa Special Issue 1:117.Google Scholar
Arena, D. A. 2004. The geological history and development of the terrain at the Riversleigh World Heritage Area during the middle Tertiary. University of New South Wales, Sydney.Google Scholar
Chao, A., and Shen, T.-J. 2003. Program SPADE (Species Prediction and Diversity Estimation), program and user's guide. Available athttp://chao.stat.nthu.edu.tw.Google Scholar
Chao, A., Shen, T.-J., and Hwang, W.-H. 2006. Application of Laplace's boundary-mode approximations to estimate species and shared species richness. Australian and New Zealand Journal of Statistics 48:117128.Google Scholar
Dice, L. R. 1945. Measures of the amount of ecological association between species. Ecology 26:297302.Google Scholar
Escarguel, G. 2005. Mathematics and the lifeway of Mesopithecus. International Journal of Primatology 26:801823.Google Scholar
Escarguel, G., and Legendre, S. 2006. New methods for analysing deep-time meta-community dynamics and their application to the Paleogene mammals from the Quercy and Limagne area (Massif Central, France). Strata 13:245273.Google Scholar
Escarguel, G., Marandat, B., and Legendre, S. 1997. Sur l'âge numérique des faunes de mammifères du Paléogène d'Europe occidentale, en particulier celles de l'Eocène inférieur et moyen. Pp. 443460in Aguilar, J.-P. et al. 1997.Google Scholar
Escarguel, G., Legendre, S., and Sigé, B. 2008. Unearthing deep-time biodiversity changes: the Palaeogene mammalian meta-community of the Quercy and Limagne area (Massif Central, France). Comptes Rendus Géoscience 340:602614.Google Scholar
Cano, A. R. Gómez, Yelo, B. A. García, and Fernández, M. Hernández 2006. Cenogramas, análisis bioclimático y muestreo en faunas de mamíferos: implicaciones para la aplicación de métodos de análisis paleoecológico. Estudios Geológicos 62:135144.Google Scholar
Guénoche, A., and Garreta, H. 2001. Can we have confidence in a tree representation? Proceedings of JOBIM'2000, Lecture Notes in Computer Sciences 2066:4353.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9.Google Scholar
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of Southern France. Palaeovertebrata 16:191212.Google Scholar
Legendre, S. 1987a. Les communautés de mammifères d'Europe occidentale de l'Eocene supérieur et Oligocène: structures et milieux. Münchner Geowissenschaftliche, Abhandlungen A 10:301312.Google Scholar
Legendre, S. 1987b. Les communautés de mammifères et leurs milieux en Europe Occidentale de l'Eocene supérieur et l'Oligocène. Revue de Paleobiologie 6:19831988.Google Scholar
Legendre, S. 1987c. Concordance entre paléontologie continentale et les événements paléocéanographiques: exemple des faunes de mammifères du Paléogène du Quercy. Comptes Rendus de l'Académie des Sciences de Paris, série 3 304:4550.Google Scholar
Legendre, S. 1987d. Mammalian faunas as paleotemperature indicators: concordance between oceanic and terrestrial paleontological evidence. Evolutionary Theory 8:7786.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche, Abhandlungen A 16:1110.Google Scholar
Legendre, S., and Bachelet, B. 1993. The numerical ages: a new method of datation applied to Paleogene mammalian localities from Southern France. Newsletters on Stratigraphy 29:137158.Google Scholar
Legendre, S., and Girard, C. 1999. Impact des crises dans les domaines marins et terrestres: évolution de la biodiversité des conodontes (Dévonien, Montagne Noire) et des mammifères (Paléogène, Quercy). Geobios 32:275284.Google Scholar
Legendre, S., and Hartenberger, J.-L. 1992. Evolution of mammalian faunas in Europe during the Eocene and Oligocene. Pp. 516528in Prothero, D. R. and Berggren, W. A., eds. Climatic and biotic evolution. Princeton University Press, Princeton, N.J.Google Scholar
Legendre, S., Crochet, J.-Y., Godinot, M., Hartenberger, J.-L., Marandat, B., Remy, J.-A., Sigé, B., Sudre, J., and Vianey-Liaud, M. 1991. Evolution de la diversité des faunes de mammifères d'Europe occidentale au Paléogène (MP 11 à MP 30). Bulletin de la Société Géologique de France 162:867874.Google Scholar
Legendre, S., Badgley, C., and Gingerich, P. D. 1997a. Mammifères, taille et climat: les faunes “locales” de mammifères sont-elles au plan de la taille une collection d'espèces prises au hasard dans l'intervalle souris-éléphant ou sont-elles des communautiés structurées par le milieu? Geobios Mémoire Spécial 21:41.Google Scholar
Legendre, S., Sigé, B., Astruc, J.-G., Bonis, L. d., Crochet, J.-Y., Denys, C., Godinot, M., Hartenberger, J.-L., Leveque, F., Marandat, B., Mourer-Chauvire, C., Rage, J.-C., Remy, J.-A., Sudre, J., and Vianey-Liaud, M. C. 1997b. Les phosphorites du Quercy: 30 ans de recherche. Bilan et perspectives. Geobios Mémoire Spécial 20:331345.Google Scholar
Legendre, S., Mourer-Chauvire, C., Hugueney, M., Maitre, E., Sigé, B., and Escarguel, G. 2006. Dynamique de la diversité des mammifères et des oiseaux paléogènes du Massif Central. Strata, série 1 13:273280.Google Scholar
Louys, J., Travouillon, K. J., Bassarova, M., and Tong, H. 2009. The use of protected natural areas in palaeoecological analyses: assumptions, limitations and application. Journal of Archaeological Science 36:22742288.Google Scholar
Mein, P. 1999. European Miocene mammal biochronology. Pp. 2538in Rössner, G. E. and Heissig, K., eds. The Miocene land mammals of Europe. Friedrich Pfeil, Munich.Google Scholar
Remy, J. A., Crochet, J. Y., Sige, B., Sudre, J., de Bonis, L., Vianey-Liaud, M., Godinot, M., Hartenberger, J. L., Lange-Badre, B., and Comte, B. 1987. Biochronologie des Phosphorites du Quercy: mise à jour des listes fauniques et nouveaux gisements de mammifères fossiles. Pp. 169188in Schmitt-Kittler, N., ed. International symposium on mammalian biostratigraphy and paleoecology of the European Paleogene. Munchner Geowissenschaftliche, Abhandlungen A.Google Scholar
Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406425.Google Scholar
Travouillon, K. J., Archer, M., Hand, S. J., and Godthelp, H. 2006. Multivariate analyses of Cenozoic mammalian faunas from Riversleigh, north-western Queensland. Alcheringa Special Issue 1:323349.Google Scholar
Travouillon, K. J., Archer, M., Legendre, S., and Hand, S. J. 2007. Finding the Minimum Sample Richness (MSR) for multivariate analyses: implications for palaeoecology. Historical Biology 194:315320.Google Scholar