Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T04:54:27.417Z Has data issue: false hasContentIssue false

Avian blood parasites in an endangered columbid: Leucocytozoon marchouxi in the Mauritian Pink Pigeon Columba mayeri

Published online by Cambridge University Press:  04 January 2007

N. BUNBURY*
Affiliation:
Centre for Ecology, Evolution and Conservation, University of East Anglia, UK Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
E. BARTON
Affiliation:
School of Medicine, Health Policy and Practice, University of East Anglia, UK
C. G. JONES
Affiliation:
Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel Islands, UK
A. G. GREENWOOD
Affiliation:
International Zoo Veterinary Group, Keighley Business Centre, South Street, Keighley, W. Yorkshire BD21 1AG, UK
K. M. TYLER
Affiliation:
School of Medicine, Health Policy and Practice, University of East Anglia, UK
D. J. BELL
Affiliation:
Centre for Ecology, Evolution and Conservation, University of East Anglia, UK
*
*Corresponding author: Langackerstrasse 50, 8057 Zürich, Switzerland. E-mail: N.Bunbury@uea.ac.uk

Summary

There is increasing evidence that pathogens can play a significant role in species decline. This study of a complete free-living species reveals a cost of blood parasitism to an endangered host, the Pink Pigeon Columba mayeri, endemic to Mauritius. We investigated the prevalence and effect of infection of the blood parasite, Leucocytozoon marchouxi, in the free-living Pink Pigeon population. Overall, L. marchouxi infection prevalence detected was 18·3%. Juveniles were more likely to be infected than older birds and there was geographical variation in infection prevalence. Survival of birds infected with L. marchouxi was lower than that of uninfected birds to 90 days post-sampling. This study suggests that while common haematozoa are well tolerated in healthy adults, these parasites may have greater pathogenic potential in susceptible juveniles. The study is unusual given its completeness of species sampling (96%) within a short time-period, the accurate host age data, and its focus on blood parasites in a threatened bird species. Species for which long-term life-history data are available for every individual serve as valuable models for dissecting the contribution of particular pathogens to species decline.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allander, K. and Bennett, G. F. (1994). Prevalence and intensity of haematozoan infection in a population of great tits Parus major from Gotland, Sweden. Journal of Avian Biology 25, 6974.CrossRefGoogle Scholar
Ashford, R. W., Wyllie, I. and Newton, I. (1990). Leucocytozoon toddi in British sparrowhawks Accipiter nisus: observations on the dynamics of infection. Journal of Natural History 24, 11011107.CrossRefGoogle Scholar
Atkinson, C. T. and van Riper, C. III (1991). Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In Bird-Parasite Interactions: Ecology, Evolution, and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 1948. Oxford University Press, Oxford, UK.Google Scholar
Baldwin, W. F., Gomery, J. and West, A. S. (1975). Dispersal patterns of black flies (Diptera: Simuliidae) tagged with 32P. Canadian Entomology 107, 113118.CrossRefGoogle Scholar
Bennett, G. F., Caines, J. R. and Bishop, M. A. (1988). Influence of blood parasites on the body mass of passeriform birds. Journal of Wildlife Diseases 24, 339343.CrossRefGoogle ScholarPubMed
Bennett, G. F., Peirce, M. A. and Ashford, R. W. (1993). Avian haematozoa: mortality and pathogenicity. Journal of Natural History 27, 9931001.CrossRefGoogle Scholar
Crosskey, R. W. and Báez, M. (2004). A synopsis of present knowledge of the Simuliidae (Diptera) of the Canary Islands, including keys to the larval and pupal stages. Journal of Natural History 38, 20852117.CrossRefGoogle Scholar
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443449.CrossRefGoogle ScholarPubMed
Davidar, P. and Morton, E. S. (1993). Living with parasites: prevalence of a blood parasite and its effect on survivorship in the purple martin. Auk 110, 109116.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (1999). Prevalence and intensity of haematozoan infections in a population of American kestrels. Canadian Journal of Zoology 77, 162170.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (2000). Effects of haematozoan parasites on condition and return rates of American kestrels. Auk 117, 373380.CrossRefGoogle Scholar
Deem, S., Karesh, W. B. and Weisman, W. (2001). Putting theory into practice: Wildlife health in conservation. Conservation Biology 15, 12241233.CrossRefGoogle Scholar
Deviche, P., Greiner, E. C. and Manteca, X. (2001). Seasonal and age-related changes in blood parasite prevalence in Dark-eyed Juncos (Junco hyemalis, Aves, Passeriformes). Journal of Experimental Zoology 289, 456466.CrossRefGoogle ScholarPubMed
Dobson, A. P. and May, R. M. (1991). Parasites, cuckoos and avian population dynamics. In Bird Population Studies: Relevance to Conservation Management (ed. Perrins, C. M., Lebreton, J.-D. and Hirons, G. J. M.), pp. 391412. Oxford University Press, Oxford, UK.Google Scholar
Fallis, M. A. and Bennett, G. F. (1966). On the epizootiology of infections caused by Leucocytozoon simondi in Algonquin Park, Canada. Canadian Journal of Zoology 44, 101112.Google Scholar
Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science 218, 384387.Google Scholar
Herman, C. M., Barrow, J. H. and Tarshis, I. B. (1970). Epizootiology of Leucocytozoon in Canada Geese (Branta canadensis). Journal of Parasitology 56, 143144.Google Scholar
Hunter, D. B., Rohner, C. and Currie, D. C. (1997). Mortality in great-horned owls from black fly hematophaga and leucocytozoonosis. Journal of Wildlife Diseases 33, 486491.CrossRefGoogle ScholarPubMed
Kaplan, E. L. and Meier, P. (1958). Non-parametric estimation from incomplete observations. Journal of American Statistics 53, 457481.CrossRefGoogle Scholar
Krone, O., Priemer, J., Streich, J., Sömmer, P., Langgemach, T. and Lessow, O. (2001). Haemosporidia of birds of prey and owls from Germany. Acta Protozoologica 40, 281289.Google Scholar
McCallum, H. and Dobson, A. (1995). Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution 10, 190194.CrossRefGoogle ScholarPubMed
Merila, J., Bjorklund, M. and Bennett, G. F. (1995). Geographic and individual variation in haematozoan infections in the greenfinch Carduelis chloris. Canadian Journal of Zoology 73, 17981804.CrossRefGoogle Scholar
Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits. Proceedings of the Royal Society of London, B 267, 25072510. DOI 10·1098/rspb.2000·1312.CrossRefGoogle Scholar
Nordling, D., Andersson, M., Zohari, S. and Gustafsson, L. (1998). Reproductive effort reduces specific immune response and parasite resistance. Proceedings of the Royal Society of London, B 267, 25072510.Google Scholar
Norris, K., Anwar, M. and Read, A. F. (1994). Reproductive effort influences the prevalence of haematozoan parasites in great tits. Journal of Animal Ecology 63, 601610.CrossRefGoogle Scholar
Ots, I. and Hõrak, P. (1998). Health impact of blood parasites in breeding great tits. Oecologia 116, 441448.CrossRefGoogle ScholarPubMed
Peirce, M. A. (1984). Haematozoa of Zambian birds. I. General survey. Journal of Natural History 18, 105122.CrossRefGoogle Scholar
Peirce, M. A., Cheke, A. S. and Cheke, R. A. (1977). A survey of blood parasites of birds in the Mascarene Islands, Indian Ocean. Ibis 119, 451461.CrossRefGoogle Scholar
Peirce, M. A., Greenwood, A. G. and Swinnerton, K. (1997). Pathogenicity of Leucocytozoon marchouxi in the Pink Pigeon (Columba mayeri) in Mauritius. Veterinary Record 140, 155156.Google ScholarPubMed
Ricklefs, R. E. (1992). Embryonic development period and the prevalence of avian blood parasites. Proceedings of the National Academy of Sciences, USA 89, 47224725.CrossRefGoogle ScholarPubMed
Rintamaki, P. T., Huhta, E., Jokimaki, J. and Squires-Parsons, D. (1999). Leucocytozoonosis and trypanosomiasis in redstarts in Finland. Journal of Wildlife Diseases 35, 603607.CrossRefGoogle ScholarPubMed
Sanz, J. J., Arriero, E., Moreno, J. and Merino, S. (2001). Interactions between haemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126, 339344.CrossRefGoogle Scholar
Schrader, M. S., Walters, E. L., James, F. C. and Greiner, E. C. (2003). Seasonal prevalence of a haematozoan parasite of red-bellied woodpeckers (Melanerpes carolinus) and its association with host condition and overwinter survival. Auk 120, 130137.CrossRefGoogle Scholar
Seutin, G. (1994). Plumage redness in redpoll finches does not reflect hemoparasitic infection. Oikos 70, 280286.CrossRefGoogle Scholar
Shutler, D., Ankney, C. D. and Dennis, D. G. (1996). Could the blood parasite Leucocytozoon deter mallard range expansion? Journal of Wildlife Management 60, 569580.CrossRefGoogle Scholar
Sol, D., Jovani, R. and Torres, J. (2000). Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23, 307314.CrossRefGoogle Scholar
Sol, D., Jovani, R. and Torres, J. (2003). Parasite-mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia 135, 542547.CrossRefGoogle ScholarPubMed
Stjernman, M., Raberg, L. and Nilsson, J.-A. (2004). Survival costs of reproduction in the blue tit (Parus caeruleus): a role for blood parasites? Proceedings of the Royal Society of London, B 271, 23872394. DOI 10.1098/rspb.2004.2883.CrossRefGoogle ScholarPubMed
Swinnerton, K. J. (2001). Conservation and ecology of the Pink Pigeon Columba mayeri in Mauritius. Ph.D. thesis. Durrell Institute of Conservation and Ecology, University of Kent, Canterbury.Google Scholar
Swinnerton, K. J., Peirce, M. A., Greenwood, A. G., Chapman, R. E. and Jones, C. G. (2005). Prevalence of Leucocytozoon marchouxi in the endangered Pink Pigeon Columba mayeri. Ibis 147, 725737.CrossRefGoogle Scholar
Tella, J. L. (2002). The evolutionary transition to coloniality promotes higher blood parasitism in birds. Journal of Evolutionary Biology 15, 3241.CrossRefGoogle Scholar
Valkiūnas, G. (2005). Avian malaria parasites and other haemosporidia. CRC Press, Florida.Google Scholar
van Riper, C., van Riper, S. G., Goff, M. L. and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327344.CrossRefGoogle Scholar
Warner, R. E. (1968). The role of introduced diseases in the extinction of the Hawaiian avifauna. Condor 70, 101120.Google Scholar
Weatherhead, P. J. and Bennett, G. F. (1991). Ecology of red-winged blackbird parasitism by haematozoa. Canadian Journal of Zoology 69, 23522359.CrossRefGoogle Scholar
Weatherhead, P. J. and Bennett, G. F. (1992). Ecology of parasitism of brown-headed cowbirds by haematozoa. Canadian Journal of Zoology 70, 17.CrossRefGoogle Scholar