Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:10:58.909Z Has data issue: false hasContentIssue false

Beak condition drives abundance and grooming-mediated competitive asymmetry in a poultry ectoparasite community

Published online by Cambridge University Press:  18 March 2011

BRIAN L. CHEN
Affiliation:
Department of Entomology, University of California, Riverside, California 92521, USA
KATHRYN L. HAITH
Affiliation:
Department of Entomology, University of California, Riverside, California 92521, USA
BRADLEY A. MULLENS*
Affiliation:
Department of Entomology, University of California, Riverside, California 92521, USA
*
*Corresponding author. Tel: +951 827 5800. Fax: +951 827 3086. E-mail: mullens@mail.ucr.edu

Summary

Objective. Ornithonyssus sylviarum (northern fowl mite) and Menacanthus stramineus (chicken body louse) are key poultry pests currently controlled by exclusion or pesticide application. We studied how host beak condition affected their populations over time and how the lice and mites might interact on a host. Methods. Beak-trimmed or beak-intact white leghorn hens were infested initially with either mites or lice and subsequently challenged using the alternate ectoparasite species (reciprocal transfer), while other hens harboured only the initial ectoparasite species. Results. Beak-trimmed hens had far higher ectoparasite numbers relative to beak-intact hens, and the 2 ectoparasites showed evidence of grooming-mediated competitive asymmetry. On beak-trimmed hens, larger numbers of lice quickly nearly completely excluded mites in competition for enemy-free space (lower abdomen), while in the reciprocal transfer mites did not affect louse numbers on beak-trimmed hosts. The 2 ectoparasites co-existed on beak-intact hens, which were better able to defend the lower abdomen habitat by grooming. Conclusion. Lice are somewhat less damaging and much easier to control relative to mites, and might be used to eliminate mites in commercial, beak-trimmed flocks. Beak trimming impairs host grooming and contributes greatly to the high ectoparasite populations seen in commercial flocks. The study adds incentives for poultry breeders to develop more docile hen strains that can be held without beak trimming. This has advantages both to welfare advocates and producers who may no longer need to use insecticides for pest control or be concerned about worker exposure to pesticides.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1999). Battery cages to be phased out. Veterinary Record 144, 711.Google Scholar
Aronoff, D. M. (2002). Using live pathogens to treat infectious diseases: a historical perspective on the relationship between GB virus C and HIV. Antiviral Therapy 7, 73–30.CrossRefGoogle Scholar
Arthur, F. H. and Axtell, R. C. (1983). Northern fowl mite population development on laying hens housed at three colony densities. Poultry Science 62, 424427.CrossRefGoogle Scholar
Axtell, R. C. and Arends, J. J. (1990). Ecology and management of arthropod pests of poultry. Annual Review of Entomology 35, 101126.CrossRefGoogle ScholarPubMed
Barnett, J. L. and Hemsworth, P. H. (2009). Welfare monitoring schemes: using research to safeguard welfare of animals on the farm. Journal of Applied Animal Welfare Science 12, 114131.CrossRefGoogle ScholarPubMed
Bell, J. F., Jellison, W. L. and Owen, C. R. (1962). Effects of limb disability on lousiness in mice. I Preliminary studies. Experimental Parasitology 12, 176183.CrossRefGoogle ScholarPubMed
Blokhuis, H. J., Van Niekirk, T. F., Bessei, W., Elson, A., Guemene, D., Kjaer, J. B., Levrino, G. A. M., Nicol, C. J., Tauson, R., Weeks, C. A. and DeWeerd, H. A. V. (2007). The LayWel project: welfare implications of changes in production systems for laying hens. Worlds Poultry Science Journal 63, 101114.CrossRefGoogle Scholar
Brown, N. S. (1972). Effect of host beak condition on size of Menacanthus stramineus populations of domestic chickens. Poultry Science 51, 162164.CrossRefGoogle ScholarPubMed
Bush, S. E. and Malenke, J. R. (2008). Host defence mediates interspecific competition in ectoparasites. Journal of Animal Ecology 77, 558564.CrossRefGoogle ScholarPubMed
Chen, B. L. and Mullens, B. A. (2008). Temperature and humidity effects on off-host survival of the northern fowl mite (Acari: Macronyssidae) and the chicken body louse (Phthiraptera: Menoponidae). Journal of Economic Entomology 101, 637646.CrossRefGoogle ScholarPubMed
Cheng, H. (2006). Morphopathological changes and pain in beak trimmed laying hens. World's Poultry Science Journal 62, 4152.CrossRefGoogle Scholar
Clayton, D. H. and Drown, D. M. (2001). Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). Journal of Parasitology 87, 12911300.CrossRefGoogle ScholarPubMed
Clayton, D. H., Koop, J. A. H., Harbison, C. W., Moyer, B. R. and Bush, S. E. (2010). How birds combat ectoparasites. Open Ornithology Journal 3, 4171.CrossRefGoogle Scholar
Clayton, D. H., Lee, P. L. M., Tompkins, D. M. and Brodie, E. D. (1999). Reciprocal natural selection on host-parasite phenotypes. American Naturalist 154, 261270.CrossRefGoogle ScholarPubMed
Clayton, D. H., Moyer, B. R., Bysh, S. E., Jones, T. G., Gardiner, D. W., Rhodes, B. B. and Goller, F. (2005). Adaptive significance of avian beak morphology for ectoparasite control. Proceedings of the Royal Society of London, B 272, 811817.Google ScholarPubMed
Clayton, D. H. and Walther, B. A. (2001). Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94, 455467.CrossRefGoogle Scholar
Craig, J. V., Craig, J. A. and Milliken, G. A. (1992). Beak trimming effects on beak length and feed usage for growth and egg production. Poultry Science 71, 18301841.CrossRefGoogle ScholarPubMed
DeVaney, J. A. (1976). Effects of the chicken body louse, Menacanthus stramineus, on caged layers. Poultry Science 55, 430435.CrossRefGoogle ScholarPubMed
DeVaney, J. A., Quisenberry, J. H., Doran, B. H. and Bradley, J. W. (1980). Dispersal of the northern fowl mite, Ornithonyssus sylviarum (Canestrini and Fanzago), and the chicken body louse, Menacanthus stramineus (Nitzsch), among thirty strains of egg-type hens in a caged laying house. Poultry Science 59, 17451749.CrossRefGoogle Scholar
Erb, K. J. (2009). Can helminths or helminth-derived products be used in humans to prevent or treat allergic diseases? Trends in Immunology 30, 7582.CrossRefGoogle ScholarPubMed
Gentle, M. J., Hughes, B. O., Fox, A. and Waddington, D. (1997). Behavioural and anatomical consequences of two beak trimming methods in 1 and 10-d-old domestic chicks. British Poultry Science 38, 453–363.CrossRefGoogle ScholarPubMed
Gentle, M. J. and McKeegan, D. E. F. (2007). Evaluation of the effects of infrared beak trimming in broiler breeder chicks. Veterinary Record 160, 145148.CrossRefGoogle ScholarPubMed
Guesdon, V., Ahmed, A. M. H., Mallet, S., Faure, J. M. and Nys, Y. (2006). Effects of beak trimming and cage design on laying hen performance and egg quality. British Poultry Science 47, 112.CrossRefGoogle ScholarPubMed
Halbritter, D. A. and Mullens, B. A. (2011). Responses of Ornithonyssus sylviarum (Acari: Macronyssidae) and Menacanthus stramineus (Phthiraptera: Menoponidae) to gradients of temperature, light, and humidity, with comments on microhabitat selection on chickens. Journal of Medical Entomology 48 (in the Press).CrossRefGoogle ScholarPubMed
Harbison, C. W., Bush, S. E., Malenke, J. R. and Clayton, D. H. (2008). Comparative transmission dynamics of competing parasite species. Ecology 89, 31863194.CrossRefGoogle ScholarPubMed
Hart, B. L. (1997). Behavioural defence. In Host-Parasite Evolution (ed. Clayton, D. H. and Moore, J.), pp. 5977. Oxford University Press, New York, USA.CrossRefGoogle Scholar
Hester, P. Y. (2005). Impact of science and management on the welfare of egg laying strains of hens. Poultry Science 84, 687696.CrossRefGoogle ScholarPubMed
Kartman, L. (1949). Preliminary observations on the relation of nutrition to pediculosis of rats and chickens. Journal of Parasitology 35, 367374.CrossRefGoogle ScholarPubMed
Knee, W. and Proctor, H. (2007). Host records for Ornithonyssus sylviarum (Mesostigmata: Macronyssidae) from birds in North America (Canada, United States, and Mexico). Journal of Medical Entomology 44, 709713.CrossRefGoogle ScholarPubMed
Lafferty, K. D. (2010). Interacting parasites. Science 330, 187188.CrossRefGoogle ScholarPubMed
Lemke, L. A., Collison, C. H. and Kim, K. C. (1988). Host digestion to determine northern fowl mite, Ornithonyssus sylviarum (Acari: Macronyssidae) populations on mature chickens. Journal of Medical Entomology 25, 183185.CrossRefGoogle ScholarPubMed
Levins, R. (1979). Coexistence in a variable environment. The American Naturalist 114, 765783.CrossRefGoogle Scholar
Jeffries, M. J. and Lawton, J. H. (1984). Enemy free space and the structure of ecological communities. Biological Journal of the Linnaean Society 23, 269286.CrossRefGoogle Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects. Academic Press, London, UK.Google Scholar
Matthysse, J. G., Jones, C. J. and Purnasi, A. (1974). Development of northern fowl mite: populations on chickens, effects on the host, and immunology. Search Agriculture. Cornell University Agricultural Experiment Station, Ithaca, New York, USA.Google Scholar
Mench, J. A. (2008). Farm animal welfare in the USA: farming practices, research, education, regulation and assurance programs. Applied Animal Behavior Science 113, 298312.CrossRefGoogle Scholar
Mertens, K., Loeffle, J., De Baere, K., Zoons, J., De Baerdemaeker, J., Decuypere, E. and De Ketelaere, B. (2009). Layers in aviary systems: effects of beak trimming and alternative feed formulation on technical results and egg quality. Journal of Applied Poultry Research 18, 90102.CrossRefGoogle Scholar
Miller, W. V. and Price, F. C. (1977). The avian mite, Ornithonyssus sylviarum, on mammalian host, with reference to transmission to poultry. Journal of Parasitology 63, 417.CrossRefGoogle Scholar
Moller, A. P. and Rozsa, L. (2005). Parasite biodiversity and host defenses: chewing lice and immune responses of their avian hosts. Oecologia 142, 169176.CrossRefGoogle ScholarPubMed
Mullens, B. A., Chen, B. L. and Owen, J. P. (2010). Beak condition and cage density determine abundance and spatial distribution of northern fowl mites, Ornithonyssus sylviarum, and chicken body lice, Menacanthus stramineus, on caged laying hens. Poultry Science 89, 25652572.CrossRefGoogle ScholarPubMed
Mullens, B. A. and Gerhardt, R. R. (1979). Feeding behavior of some Tennessee Tabanidae. Environmental Entomology 8, 10471051.CrossRefGoogle Scholar
Mullens, B. A., Hinkle, N. C., Kuney, D. R. and Szijj, C. E. (2004 a). Producer attitudes and control practices for northern fowl mites in southern California. Journal of Applied Poultry Research 13, 488492.CrossRefGoogle Scholar
Mullens, B. A., Hinkle, N. C., Robinson, L. J. and Szijj, C. E. (2001). Dispersal of northern fowl mites, Ornithonyssus sylviarum, among hens in an experimental poultry house. Journal of Applied Poultry Research 10, 6064.CrossRefGoogle Scholar
Mullens, B. A., Owen, J. P., Kuney, D. R., Szijj, C. E. and Klingler, K. (2009). Temporal changes in distribution, prevalence and intensity of northern fowl mite (Ornithonyssus sylviarum) parasitism in commercial caged laying hens, with a comprehensive economic analysis of parasite impact. Veterinary Parasitology 160, 116133.CrossRefGoogle ScholarPubMed
Mullens, B. A., Velten, R. K., Hinkle, N. C., Kuney, D. R. and Szijj, C. E. (2004 b). Acaricide resistance in northern fowl mite (Ornithonyssus sylviarum) populations on caged layer operations in Southern California. Poultry Science 83, 365374.CrossRefGoogle ScholarPubMed
Murray, M. D. (1987). Effects of host grooming on louse populations. Parasitology Today 3, 276278.CrossRefGoogle ScholarPubMed
Oliver, J. H. (1965). Karyotypes and sex determination in some dermanyssid mites (Acarina: Mesostigmata). Annals of the Entomological Society of America 58, 567573.CrossRefGoogle ScholarPubMed
Owen, J. P. and Clayton, D. H. (2008). Where are the parasites in the PHA response? Trends in Ecology and Evolution 22, 228229.CrossRefGoogle Scholar
Owen, J. P., Delany, M. E., Cardona, C. J., Bickford, A. A. and Mullens, B. A. (2009). Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). International Journal for Parasitology 39, 789799.CrossRefGoogle Scholar
Owen, J. P., Delany, M. E. and Mullens, B. A. (2008). MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 60, 621631.CrossRefGoogle Scholar
Price, M. A. and Graham, O. H. (1997). Chewing and sucking lice as parasites of mammals and birds. U.S. Department of Agriculture Technical Bulletin 1849, 257 p.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Sartin, J. S. and Perry, H. O. (1995). From mercury to malaria to penicillin: The history of the treatment of syphilis at the Mayo Clinic- 1916–1955. Journal of the American Academy of Dermatology 32, 255261.CrossRefGoogle ScholarPubMed
Schofield, S. and Torr, S. J. (2002). A comparison of the feeding behaviour of tsetse flies and stable flies. Medical and Veterinary Entomology 16, 177185.CrossRefGoogle ScholarPubMed
Sikes, R. W. and Chamberlain, R. W. (1954). Laboratory observations on three species of bird mites. Journal of Parasitology 40, 691697.CrossRefGoogle ScholarPubMed
Stockdale, H. J. and Raun, E. S. (1965). Biology of the chicken body louse, Menacanthus stramineus. Annals of the Entomological Society of America 58, 802805.CrossRefGoogle Scholar
United Egg Producers (2008). Animal Husbandry Guidelines for U.S. Egg Laying Flocks. (www.uepcertified.com/program/guidelines/).Google Scholar
Waage, J. K. and Davies, C. R. (1986). Host-mediated competition in a bloodsucking insect community. Journal of Animal Ecology 55, 171180.CrossRefGoogle Scholar