Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:47:10.913Z Has data issue: false hasContentIssue false

Characterization and application of multiple genetic markers for Plasmodium malariae

Published online by Cambridge University Press:  04 December 2006

M. C. BRUCE*
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, Glasgow University, 120 University Place, Glasgow G12 8TA, UK
A. MACHESO
Affiliation:
Ministry of Health and Population, Government of Malawi, currently at Management Sciences for Health Malawi Program, Lilongwe
M. R. GALINSKI
Affiliation:
Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 938 Gatewood Road, Atlanta, Georgia, USA
J. W. BARNWELL
Affiliation:
Malaria Laboratory Research and Development Unit, Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, 4077 Buford Highway, NE, Atlanta, Georgia 30341, USA
*
*Corresponding author: Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, Glasgow University, 120 University Place, Glasgow G12 8TA, UK. Tel: +0141 330 2829. Fax: +0141 330 4600. E-mail: m.bruce@bio.gla.ac.uk

Summary

Plasmodium malariae, a protozoan parasite that causes malaria in humans, has a global distribution in tropical and subtropical regions and is commonly found in sympatry with other Plasmodium species of humans. Little is known about the genetics or population structure of P. malariae. In the present study, we describe polymorphic genetic markers for P. malariae and present the first molecular epidemiological data for this parasite. Six microsatellite or minisatellite markers were validated using 76 P. malariae samples from a diverse geographical range. The repeat unit length varied from 2 to17 bp, and up to 10 different alleles per locus were detected. Multiple genotypes of P. malariae were detected in 33 of 70 samples from humans with naturally acquired infection. Heterozygosity was calculated to be between 0·236 and 0·811. Allelic diversity was reduced for samples from South America and, at some loci, in samples from Thailand compared with those from Malawi. The number of unique multilocus genotypes defined using the 6 markers was significantly greater in Malawi than in Thailand, even when data from single genotype infections were used. There was a significant reduction in the multiplicity of infection in symptomatic infections compared with asymptomatic ones, suggesting that clinical episodes are usually caused by the expansion of a single genotype.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdurrahman, M. B., Aikhionbare, H. A., Babaoye, F. A., Sathiakumar, N. and Narayana, P. T. (1990). Clinicopathological features of childhood nephrotic syndrome in northern Nigeria. Quarterly Journal of Medicine 75, 563576.Google Scholar
Alifrangis, M., Lemnge, M. M., Moon, R., Theisen, M., Bygbjerg, I., Ridley, R. G. and Jakobsen, P. H. (1999). IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children. Parasitology 119, 337342.Google Scholar
Anderson, T. J., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, M. U. and Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution 17, 14671482.Google Scholar
Anderson, T. J. C., Su, X.-Z., Bockarie, M., Lagog, M. and Day, K. P. (1999). Twelve microsatellite markers for characterisation of Plasmodium falciparum from fingerprick blood samples. Parasitology 119, 113125.Google Scholar
Armour, J. A., Neumann, R., Gobert, S. and Jeffreys, A. J. (1994). Isolation of human simple repeat loci by hybridization selection. Human Molecular Genetics 3, 599–565.CrossRefGoogle ScholarPubMed
Armour, J. A. L., Alegre, S. A., Miles, S., Williams, L. J. and Badge, R. M. (1999). Minisatellites and mutation processes in tandemly repetitive DNA. In Microsatellites: Evolution and Applications (ed.Goldstein, D. B. and Schlotterer, C.), pp. 2433. Oxford University Press, Oxford.Google Scholar
Ayala, F. J., Escalante, A. A. and Rich, S. M. (1999). Evolution of Plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia 41, 5568.Google ScholarPubMed
Ayala, F. J., Lal, A. A., Escalante, A. A. and Rich, S. M. (1998). Evolutionary relationships of human malaria parasites. In Malaria: Parasite Biology, Pathogenesis and Protection (ed.Sherman, I. W.), pp. 285300. ASM Press, Washington D.C.Google Scholar
Babiker, H. A. and Walliker, D. (1997). Current views on the population structure of Plasmodium falciparum: implications for control. Parasitology Today 13, 262267.Google Scholar
Barnwell, J. W., Howard, R. J., Coon, H. G. and Miller, L. H. (1983). Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria. Infection and Immunity 40, 985994.CrossRefGoogle ScholarPubMed
Barnwell, J. W., Nichols, M. E. and Rubinstein, P. (1989). In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. Journal of Experimental Medicine 169, 17951802.CrossRefGoogle ScholarPubMed
Black, J., Hommel, M., Snounou, G. and Pinder, M. (1994). Mixed infections with Plasmodium falciparum and P. malariae and fever in malaria. Lancet 343, 1095.Google Scholar
Blampain-Azzibrouck, G., Lekoulou, F., Snounou, G., Ravollet, J. C. and Ntoumi, F. (1999). Short communication: Plasmodium falciparum and P. malariae infections in isolates from sickle cell gene carriers living in a hyperendemic area of Gabon. Tropical Medicine and International Health 4, 872874.CrossRefGoogle Scholar
Breman, J. G., Egan, A. and Keusch, G. T. (2001). The intolerable burden of malaria: a new look at the numbers. American Journal of Tropical Medicine and Hygiene 64, ivvii.CrossRefGoogle Scholar
Bruce, M. C. and Day, K. P. (2003). Cross-species regulation of Plasmodium parasitaemia in semi-immune children from Papua New Guinea. Trends in Parasitology 19, 271277.Google Scholar
Bruce, M. C., Galinski, M. R., Barnwell, J. W., Snouou, G. and Day, K. P. (1999). Polymorphism at the Msp3α locus of P. vivax: global and local diversity. American Journal of Tropical Medicine and Hygiene 61, 518525.Google Scholar
Bruce, M. C., Donnelly, C. A., Alpers, M. P., Galinski, M. R., Barwell, J. W., Walliker, D. and Day, K. P. (2000 b). Cross-species interactions between malaria parasites in humans. Science 287, 845848.CrossRefGoogle ScholarPubMed
Bruce, M. C., Donnelly, C. A., Packer, M., Lagog, M., Gibson, N., Narara, A., Walliker, D., Alpers, M. P. and Day, K. P. (2000 a). Age- and species-specific duration of infection in asymptomatic malaria infections in an endemic population in Papua New Guinea. Parasitology 121, 247256.Google Scholar
Carlton, J. M. R., Galinski, M. R., Barnwell, J. W. and Dame, J. B. (1999). Karyotype and synteny among the chromosomes of all four species of human malaria parasite. Molecular and Biochemical Parasitology 101, 2332.Google Scholar
Chadee, D. D., Tilluckdharry, C. C., Maharaj, P. and Sinanan, C. (2000). Reactivation of Plasmodium malariae infection in a Trinidadian man after neurosurgery. New England Journal of Medicine 342, 1924.CrossRefGoogle Scholar
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31, 34973500.Google Scholar
Coatney, G. R., Collins, W. E., Warren, M. and Contacos, P. G. (1971). The Primate Malarias. U.S. Government Printing Office, Washington D.C.Google Scholar
Cochrane, A. H., Barnwell, J. W., Collins, W. E. and Nussenzweig, R. S. (1985). Monoclonal antibodies produced against sporozoites of the human parasite Plasmodium malariae abolish infectivity of sporozoites of the simian parasite Plasmodium brasilianum. Infection and Immunity 50, 5861.Google Scholar
Cole-Tobian, J. L., Biasor, M. and King, C. L. (2005). High complexity of Plasmodium vivax infections in Papua New Guinean children. American Journal of Tropical Medicine and Hygiene 73, 626633.Google Scholar
Collins, W. and Jeffery, G. (1999). A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. American Journal of Tropical Medicine and Hygiene 61, 3643.CrossRefGoogle ScholarPubMed
Collins, W. E., Schwartz, I. K., Skinner, J. C. and Broderson, J. R. (1984). Studies on the UgandaI/CDC strain of Plasmodium mlarariae in Bolivian Aotus monkeys and various anophelines. Journal of Parasitology 70, 677681.CrossRefGoogle Scholar
Collins, W. E., Richardson, B. B., Sullivan, J. S., Morris, C. L. and Galland, G. G. (1997). Infection of Anopheles freeborni mosquitoes on New World monkeys infected with the Uganda I/CDC strain of Plasmodium malariae. Journal of Parasitology 83, 10991103.Google Scholar
Collins, W. E., McClure, H. M., Strobert, E., Filipski, V., Skinner, J. C., Stanfill, P. S., Richardson, B. B. and Morris, C. (1990). Infection of chimpanzees with the Uganda I/CDC strain of Plasmodium malariae. American Journal of Tropical Medicine and Hygiene 42, 99103.Google Scholar
Escalante, A. A. and Ayala, F. J. (1994). Phylogeny of the malarial genus Plasmodium derived from rRNA gene sequences. Proceedings of the National Academy of Sciences, USA 91, 1137311377.Google Scholar
Escalante, A. A., Barrio, E. and Ayala, F. J. (1995). Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Molecular Biology and Evolution 12, 616626.Google Scholar
Escalante, A. A., Freeland, D. E., Collins, W. E. and Lal, A. A. (1998). The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proceedings of the National Academy of Sciences, USA 95, 81248129.Google Scholar
Fandeur, T., Volney, B., Peneau, C. and de Thoisy, B. (2000). Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology 120, 1121.Google Scholar
Färnert, A., Arez, A. P., Babiker, H. A., Beck, H. P., Benito, A., Bjorkman, A., Bruce, M. C., Conway, D. J., Day, K. P., Henning, L., Mercereau-Puijalon, O., Ranford-Cartwright, L. C., Rubio, J. M., Snounou, G., Walliker, D., Zwetyenga, J. and do Rosario, V. E. (2001). Genotyping of Plasmodium falciparum infections by PCR: a comparative multicentre study. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 225232.Google Scholar
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Blackwell, Oxford.Google Scholar
Gilles, H. M. and Warrell, D. A. (1993). Bruce-Chwatt's Essential Malariology. Edward Arnold, London.Google Scholar
Goldstein, D. B. and Schlotterer, C. (1999). Microsatellites: Evolution and Applications. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Gomez, J. C., McNamara, D. T., Bockarie, M. J., Baird, J. K., Carlton, J. M. and Zimmerman, P. A. (2003). Identification of a polymorphic Plasmodium vivax microsatellite marker. American Journal of Tropical Medicine and Hygiene 69, 377379.CrossRefGoogle ScholarPubMed
Greenwood, B. M., Marsh, K. and Snow, R. (1991). Why do some African children develop severe malaria? Parasitology Today 8, 239242.Google Scholar
Greenwood, B. M., Bradley, A. K., Greenwood, A. M., Byass, P., Jammeh, L., Marsh, K., Tulloch, S., Oldfield, F. S. T. and Hayes, R. (1987). Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 478486.Google Scholar
Hastings, I. M. and Watkins, W. M. (2005). Intensity of malaria transmission and the evolution of drug resistance. Acta Tropica 94, 218229.Google Scholar
Kawamoto, F., Liu, Q., Ferreira, M. and Tantular, I. (1999). How prevalant are Plasmodium ovale and P. malariae in East Asia? Parasitology Today 15, 422426.CrossRefGoogle Scholar
Kawamoto, F., Win, T. T., Mizuno, S., Lin, K., Kyaw, O., Tantulart, I. S., Mason, D. P., Kimura, M. and Wongsrichanalai, C. (2002). Unusual Plasmodium malariae-like parasites in southeast Asia. Journal of Parasitology 88, 350357.CrossRefGoogle ScholarPubMed
Kibukamusoke, J. W. (1986). The hazard of malarial nephropathy. Parasitology Today 2, 119121.CrossRefGoogle ScholarPubMed
Kyes, S., Craig, A. G., Marsh, K. and Newbold, C. I. (1993). Plasmodium falciparum: a method for the amplification of S antigens and its application to laboratory and field samples. Experimental Parasitology 77, 473483.Google Scholar
Leclerc, M. C., Durand, P., Gauthier, C., Patot, S., Billotte, N., Menegon, M., Severini, C., Ayala, F. J. and Renaud, F. (2004). Meager genetic variability of the human malaria agent Plasmodium vivax. Proceedings of the National Academy of Sciences, USA 101, 1445514460.Google Scholar
Lingnau, A., Doehring-Schwerdtfeger, E. and Maier, W. A. (1994). Evidence for 6-day cultivation of human Plasmodium malariae. Parasitology Research 80, 265266.CrossRefGoogle ScholarPubMed
Liu, Q., Zhu, S., Mizuno, S., Kimura, M., Liu, P., Isomura, S., Wang, X. and Kawamoto, F. (1998). Sequence variation in the small-subunit rRNA gene of Plasmodium malariae and prevalence of isolates with the variant sequence in Sichuan, China. Journal of Clinical Microbiology 36, 33783381.Google Scholar
Luxemburger, C., Thwai, K. L., White, N. J., Webster, H. K., Kyle, D. E., Maelankirri, L., Chongsuphajaisiddhi, T. and Nosten, F. (1996). The epidemiology of malaria in a Karen population on the western border of Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 105111.CrossRefGoogle Scholar
Maguire, J. D., Sumawinata, I. W., Masbar, S., Laksana, B., Prodjodipuro, P., Susanti, I., Sismadi, P., Mahmud, N., Bangs, M. J. and Baird, J. K. (2002). Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet 360, 5860.Google Scholar
May, J., Falusi, A. G., Mockenhaupt, F. P., Ademowo, O. G., Olumese, P. E., Bienzle, U. and Meyer, C. G. (2000). Impact of subpatent multi-species and multi-clonal plasmodial infections on anaemia in children from Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 399403.CrossRefGoogle ScholarPubMed
McKenzie, F. E., Jeffery, G. M. and Collins, W. E. (2002). Plasmodium malariae infection boosts Plasmodium falciparum gametocyte production. American Journal of Tropical Medicine and Hygiene 67, 411414.Google Scholar
Mehlotra, R. K., Lorry, K., Kastens, W., Miller, S. M., Alpers, M. P., Bockarie, M., Kazura, J. W. and Zimmerman, P. A. (2000). Random distribution of mixed species malaria infections in Papua New Guinea. American Journal of Tropical Medicine and Hygiene 62, 225231.CrossRefGoogle ScholarPubMed
Millet, P., Collins, W. E., Fisk, T. L. and Nguyen-Dinh, P. (1988). In vitro cultivation of exoerythrocytic stages of the human malaria parasite Plasmodium malariae. American Journal of Tropical Medicine and Hygiene 38, 470473.CrossRefGoogle ScholarPubMed
Molineaux, L. and Grammiccia, G. (1980). The Garki Project: Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa. The World Health Organization, Geneva.Google Scholar
Mwangi, J. M., Omar, S. A. and Ranford-Cartwright, L. C. (2006). Comparison of microsatellite and antigen-coding loci for differentiating recrudescing Plasmodium falciparum infections from reinfections in Kenya. International Journal for Parasitology 36, 329336.Google Scholar
Nair, S., Williams, J. T., Brockman, A., Paiphun, L., Mayxay, M., Newton, P. N., Guthmann, J. P., Smithuis, F. M., Hien, T. T., White, N. J., Nosten, F. and Anderson, T. J. (2003). A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Molecular Biology and Evolution 20, 15261536.Google Scholar
Nash, D., Nair, S., Mayxay, M., Newton, P. N., Guthmann, J. P., Nosten, F. and Anderson, T. J. (2005). Selection strength and hitchhiking around two anti-malarial resistance genes. Proceedings of the Royal Society of London, B 272, 11531161.Google Scholar
Nyachieo, A., Van Overmeir, C., Laurent, T., Dujardin, J. C. and D'Alessandro, U. (2005). Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. American Journal of Tropical Medicine and Hygiene 73, 210213.Google Scholar
Otieno, L. S. and Mc'Ligeyo, S. O. (1988). Review article: immune nephritides due to malaria. East African Medical Journal 65, 402406.Google Scholar
Pearce, R., Malisa, A., Kachur, S. P., Barnes, K., Sharp, B. and Roper, C. (2005). Reduced variation around drug-resistant dhfr alleles in African Plasmodium falciparum. Molecular Biology and Evolution 22, 18341844.CrossRefGoogle ScholarPubMed
Qari, S. H., Shi, Y. P., Pieniazek, N. J., Collins, W. E. and Lal, A. A. (1996). Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Molecular Phylogenetics and Evolution 6, 157165.CrossRefGoogle ScholarPubMed
Roper, C., Pearce, R., Nair, S., Sharp, B., Nosten, F. and Anderson, T. (2004). Intercontinental spread of pyrimethamine-resistant malaria. Science 305, 1124.Google Scholar
Sambrook, J. and Russell, D. W. (2001). Molecular Cloning – a Laboratory Manual, 3rd Edn. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Scopel, K. K., Fontes, C. J., Nunes, A. C., Horta, M. F. and Braga, E. M. (2004). High prevalence of Plamodium malariae infections in a Brazilian Amazon endemic area (Apiacas-Mato Grosso State) as detected by polymerase chain reaction. Acta Tropica 90, 6164.CrossRefGoogle Scholar
Siala, E., Khalfaoui, M., Bouratbine, A., Hamdi, S., Hili, K. and Aoun, K. (2005). Relapse of Plasmodium malariae malaria 20 years after living in an endemic area. Presse Medicale 34, 371372.Google Scholar
Singh, B., Bobogare, A., Cox-Singh, J., Snounou, G., Shukri Abdullah, M. and Abdul Rahman, H. (1999). A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. American Journal of Tropical Medicine and Hygiene 60, 687692.CrossRefGoogle ScholarPubMed
Smith, T., Charlwood, J. D., Kihonda, J., Mwankusye, S., Billingsey, P., Meuwissen, J., Lyimo, E., Takken, W., Teuscer, T. and Tanner, M. (1993). Absence of seasonal variation in malaria parasitaemia in an area of intense seasonal transmission. Acta Tropica 54, 5572.CrossRefGoogle Scholar
Smith, T., Beck, H. P., Kitua, A., Mwankusye, S., Felger, I., Fraser-Hurt, N., Irion, A., Alonso, P., Teuscher, T. and Tanner, M. (1999). Age dependence of the multiplicity of Plasmodium falciparum infections and of other malariological indices in an area of high endemicity. Transactions of the Royal Society of Tropical Medicine and Hygiene 93 (Suppl 1), 1520.Google Scholar
Smith, T., Genton, B., Baea, K., Gibson, N., Narara, A. and Alpers, M. P. (2001). Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium. American Journal of Tropical Medicine and Hygiene 64, 262267.Google Scholar
Snounou, G., Viriyakosol, S., Zhu, X. P., Jarra, W., Pinheiro, L., Rosário, V. E., Thaithong, S. and Brown, K. N. (1993). High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology 61, 315320.Google Scholar
Staden, R., Beal, K. F. and Bonfield, J. K. (2000). The Staden package, 1998. Methods in Molecular Biology 132, 115130.Google Scholar
Sutherland, C. J., Drakeley, C. J., Obisike, U., Coleman, R., Jawara, M., Targett, G. A., Milligan, P., Pinder, M. and Walraven, G. (2003). The addition of artesunate to chloroquine for treatment of Plasmodium falciparum malaria in Gambian children delays, but does not prevent treatment failure. American Journal of Tropical Medicine and Hygiene 69, 1925.Google Scholar
Tahar, R., Ringwald, P. and Basco, L. K. (1998). Heterogeneity in the circumsporozoite protein gene of Plasmodium malariae isolates from sub-Saharan Africa. Molecular and Biochemical Parasitology 92, 7178.Google Scholar
Tobian, A. A., Mehlotra, R. K., Malhotra, I., Wamachi, A., Mungai, P., Koech, D., Ouma, J., Zimmerman, P. and King, C. L. (2000). Frequent umbilical cord-blood and maternal-blood infections with Plasmodium falciparum, P. malariae, and P. ovale in Kenya. Journal of Infectious Diseases 182, 558563.Google Scholar
Trager, W. and Jenson, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 674675.Google Scholar
Trape, J. F., Rogier, C., Konate, L., Diagne, N., Bouganali, H., Canque, B., Legros, F., Badji, A., Ndiaye, G., Ndiaye, P., Brahimi, K., Faye, O., Druilhe, P. and Pereira da Silva, L. (1994). The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. American Journal of Tropical Medicine and Hygiene 51, 123137.Google Scholar
Vinetz, J. M., Li, J., McCutchan, T. F. and Kaslow, D. C. (1998). Plasmodium malariae infection in an asymptomatic 74-year-old Greek woman with splenomegaly. New England Journal of Medicine 338, 367371.CrossRefGoogle Scholar
Wernsdorfer, W. H. and McGregor, I. (1988). Malaria: Principles and Practice of Malariology. Churchill Livingstone, London.Google Scholar
Zhou, M., Liu, Q., Wongsrichanalai, C., Suwonkerd, W., Panart, K., Prajakwong, S., Pensiri, A., Kimura, M., Matsuoka, H., Ferreira, M. U., Isomura, S. and Kawamoto, F. (1998). High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the Thai-Myanmar border, as revealed by acridine orange staining and PCR-based diagnoses. Tropical Medicine and International Health 3, 304312.Google Scholar