Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:08:29.390Z Has data issue: false hasContentIssue false

Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review

Published online by Cambridge University Press:  21 April 2020

Marie Gay*
Affiliation:
Gembloux Agro-Bio Tech, Functional and Evolutionary Entomology Unit, University of Liège, Gembloux, Belgium
Laetitia Lempereur
Affiliation:
Faculty of Veterinary Medicine, Laboratory of Parasitology and Parasitic Diseases, Centre for Fundamental and Applied Research for Animal Health, University of Liège, Liège, Belgium
Frédéric Francis
Affiliation:
Gembloux Agro-Bio Tech, Functional and Evolutionary Entomology Unit, University of Liège, Gembloux, Belgium
Rudy Caparros Megido
Affiliation:
Gembloux Agro-Bio Tech, Functional and Evolutionary Entomology Unit, University of Liège, Gembloux, Belgium
*
Author for correspondence: Marie Gay, E-mail: marie.gay@doct.uliege.be, entomologie.gembloux@ulg.ac.be

Abstract

Dermanyssus gallinae (De Geer 1778), commonly named the poultry red mite (PRM), is considered to be the most harmful ectoparasite in poultry farms in Europe. This species feeds on the blood of laying hens, but spends most of its time hidden in cracks and crevices around hen nests. To control PRM populations in poultry houses, chemical pesticides are currently used; however, concern is growing regarding the harmful residues found in eggs and hens, along with the increased resistance of mites against several compounds. Alternatives to synthetic compounds are now being explored, including vaccines, biological control, physical control and semiochemical control based on the chemical ecology of PRM. This review focused on the different volatile organic compounds (VOCs) identified from D. gallinae and other mite species that have been discovered to control them. Pheromones (aggregation pheromone, sex pheromone and alarm pheromone) and kairomones promoting attraction behaviour in D. gallinae and other mite species are presented, while VOCs from essential oils and plant extracts with repellent properties are also explored. Finally, devices using VOCs on PRM in the field are described, with devices that have been tested on other Acari species being mentioned as potential directions for the future control of PRM.

Type
Review Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achiano, KA and Giliomee, JH (2006) Feeding behaviour of the potential predators of the house flies, Musca domestica L. and Fannia canicularis (L.) (Diptera: Muscidae). African Entomology 14, 6975.Google Scholar
Amin, MM, Mizell, RF and Flowers, RW (2010) Response of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) to pesticides and kairomones of three spider mite species (Acari: Tetranychidae), and non-prey food. Florida Entomologist 92, 554562.Google Scholar
Barimani, A, Youssefi, MR and Tabari, MA (2016) Traps containing carvacrol, a biological approach for the control of Dermanyssus gallinae. Parasitology Research 115, 34933498.CrossRefGoogle ScholarPubMed
Beugnet, F, Chauve, C, Gauthey, M and Beert, L (1997) Resistance of the red poultry mite to pyrethroids in France. Veterinary Record 140, 577579.CrossRefGoogle ScholarPubMed
Birkett, M, Pickett, J, Dewhirst, S, Jespersen, JB and Kilpinen, OO (2010) Use of a carboxylic acid or an aldehyde. Patent WO 2010/130990 A2, 123.Google Scholar
Bruneau, A, Dernburg, A, Chauve, C and Zenner, L (2001) First in vitro cycle of the chicken mite. Dermanyssus gallinae (De Geer 1778), utilizing an artificial feeding device. Parasitology 123, 583589.CrossRefGoogle Scholar
Calderone, NW and Lin, S (2001) Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of workers and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiological Entomology 26, 341350.10.1046/j.0307-6962.2001.00254.xCrossRefGoogle Scholar
Camarda, A, Pugliese, N, Bevilacqua, A, Circella, E, Gradoni, L, George, D, Sparagano, O and Giangaspero, A (2018) Efficacy of a novel neem oil formulation (RP03TM) to control the poultry red mite Dermanyssus gallinae. Medical and Veterinary Entomology 32, 290297.10.1111/mve.12296CrossRefGoogle Scholar
Carr, AL and Roe, M (2016) Acarine attractants: Chemoreception, bioassay, chemistry and control. Pesticide Biochemistry and Physiology 131, 6079. http://dx.doi.org/10.1016/j.pestbp.2015.12.009CrossRefGoogle ScholarPubMed
Chauve, C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Veterinary Parasitology 79, 239245.CrossRefGoogle Scholar
Chen, Y, Martin, C, Fingu Mabola, JC, Verheggen, F, Wang, Z, He, K and Francis, F (2019) Effects of host plants reared under elevated CO2 concentrations on the foraging behavior of different stages of corn leaf aphids Rhopalosiphum maidis. Insects 10, 111.CrossRefGoogle ScholarPubMed
Collof, M (2009) Dust mites. Melbourne: CSIRO Publishing.Google Scholar
Cosoroaba, I (2001) Massive Dermanyssus gallinae invasion in battery-husbandry raised fowls. Revue de médecine vétérinaire 152, 8996.Google Scholar
Deletre, E, Schatz, B, Bourguet, D, Chandre, F, Williams, L, Ratnadass, A and Martin, T (2016) Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127142.CrossRefGoogle Scholar
Dhivya, B, Latha, BR, Raja, MD, Sreekumar, C and Leela, V (2014) Control of brown dog tick, Rhipicephalus sanguineus using assembly pheromone encapsulated in natural polymer, chitosan. Experimental and Applied Acarology 63, 8592.CrossRefGoogle ScholarPubMed
El Adouzi, M, Arriaga, A, Dormont, L, Nicolas, B, Labalette, A, Lapeyre, B, Bonato, O and and Roy, L (2019) Modulation of feed composition is able to make hens less attractive to the poultry red mite Dermanyssus gallinae. Parasitology 147(2), 171181. doi: 10.1017/S0031182019001379Google Scholar
Entrekin, DL and Oliver, JH (1982) Aggregation of the chicken mite, Dermanyssus gallinae (Acari: Dermanyssidae). Journal of Medical Entomology 19, 671678.CrossRefGoogle Scholar
Fashing, NJ (2003) Morphological adaptations associated with mate-guarding behavior in the genus Hericia (Acari: Algophagidae). In Halliday RB, Walter DE, Proctor HC, Norton RA and Collof MJ (eds), Acarology: Proceedings of the 10th International Congress. Melbourne: CSIRO publishing, pp. 176179.Google Scholar
Flochlay, AS, Thomas, E and Sparagano, O (2017) Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites & Vectors 10, 357.CrossRefGoogle Scholar
George, DR, Callaghan, K, Guy, JH and Sparagano, OAE (2008) Lack of prolonged activity of lavender essential oils as acaricides against the poultry red mite (Dermanyssus gallinae) under laboratory conditions. Research in Veterinary Science 85, 540542.CrossRefGoogle Scholar
George, DR, Shiel, RS, Sparagano, OAE, Port, G, Guy, JH and Okello, E (2009) Repellence of plant essential oils to Dermanyssus gallinae and toxicity to the non-target invertebrate Tenebrio molitor. Veterinary Parasitology 162, 129134.CrossRefGoogle ScholarPubMed
George, DR, Finn, RD, Graham, KM, Mul, MF, Maurer, V, Moro, CV and Sparagano, OA (2015) Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasites and Vectors 8, 110.CrossRefGoogle ScholarPubMed
Harrington, DWJ, Guy, JH, Robinson, K and Sparagano, OAE (2010) Comparison of synthetic membranes in the development of an in vitro feeding system for Dermanyssus gallinae. Bulletin of Entomological Research 100, 127132.CrossRefGoogle Scholar
Höglund, J, Nordenfors, H and Uggla, A (1995) Prevalence of the poultry red mite, Dermanyssus gallinae, in different types of production systems for egg layers in Sweden. Poultry science 74, 17931798.CrossRefGoogle ScholarPubMed
Immediato, D, Figueredo, LA, Iatta, R, Camarda, A, de Luna, RLN, Giangaspero, A, Brandão-Filho, SP, Otranto, D and Cafarchia, C (2016) Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): towards new natural acaricides. Veterinary Parasitology 229, 159165.CrossRefGoogle ScholarPubMed
Kelly, PJ, Lucas, HM, Randolph, CM, Ackerson, K, Blackburn, JK and Dark, MJ (2014) Efficacy of slow-release tags impregnated with aggregation-attachment pheromone and deltamethrin for control of Amblyomma variegatum on St. Kitts. West Indies. Parasites and Vectors 7, 182.CrossRefGoogle ScholarPubMed
Kilpinen, O (2001) Activation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), by increasing temperatures. Experimental and Applied Acarology 25, 859867.CrossRefGoogle Scholar
Kilpinen, O (2005) How to obtain a bloodmeal without being eaten by a host: the case of poultry red mite, Dermanyssus gallinae. Physiological Entomology 30, 232240.CrossRefGoogle Scholar
Kilpinen, O, Roepstorff, A, Permin, A, Nørgaard-Nielsen, G, Lawson, LG and Simonsen, HB (2005) Influence of Dermanyssus gallinae and Ascaridia galli infections on behaviour and health of laying hens (Gallus gallus domesticus). British Poultry Science 46, 2634.CrossRefGoogle Scholar
Kim, HK, Lee, SJ, Hwang, BY, Yoon, JU and Kim, GH (2018) Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology 74, 403414.CrossRefGoogle Scholar
Kirimer, N, Başer, KHC and Tümen, G (1995) Carvacrol-rich plants in Turkey. Chemistry of Natural Compounds 31, 3741.CrossRefGoogle Scholar
Kirkwood, A (1968) Some observations on the feeding habits of the poultry mites Dermanyssus gallinae and Liponyssus sylviarum. Entomologia Experimentalis et Applicata 11, 315320.CrossRefGoogle Scholar
Kirkwood, A (1971) In vitro feeding of Dermanyssus gallinae. Experimental Parasitology 29, 16.CrossRefGoogle ScholarPubMed
Koenraadt, CJM and Dicke, M (2010) The role of volatiles in aggregation and host-seeking of the haematophagous poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology 50, 191199.10.1007/s10493-009-9305-8CrossRefGoogle Scholar
Kuwahara, Y (2010) How astigmatic mites control the emission of two or even three types of pheromones from the same gland. In Trends in Acarology: Proceedings of the 12th International Congress, pp. 241247. doi: 10.1007/978-90-481-9837-5_39.CrossRefGoogle Scholar
Kuwahara, Y (2011) Chemical ecology of astigmatid mites. Journal of the agricultural chemical society of Japan 64, 17541757.CrossRefGoogle Scholar
Kuwahara, Y, Sato, M, Koshii, T and Suzuki, T (1991) Chemical ecology of astigmatid mites XXXII. 2-Hydroxy-6-methyl-benzaldehyde, the sex pheromone of the brown-legged grain mite Aleuroglyphus ovatus (TROUPEAU) (Acarina: Acaridae). Applied Entomology and Zoology 27, 253260.CrossRefGoogle Scholar
Kuwahara, Y, Asami, N, Morr, M, Matsuyama, S and Suzuki, T (1994) Chemical ecology of astigmatid mites XXXVIII aggregation pheromone and kairomone activity of lardolure and its analogues against Lardoglyphus konoi and Carpoglyphus lactis. Applied Entomology and Zoology 29, 253257.CrossRefGoogle Scholar
Le Conte, Y, Arnold, G, Trouiller, J, Masson, C, Chappe, B and Ourisson, G (1989) Attraction of the parasitic mite Varroa To the drone larvae of honey bees by simple aliphatic esters. Science (New York, N.Y.) 245, 638639.CrossRefGoogle ScholarPubMed
Lee, SJ, Kim, HK and Kim, GH (2019) Toxicity and effects of essential oils and their components on Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology 78, 6578.CrossRefGoogle Scholar
Lundh, J, Wiktelius, D and Chirico, J (2005) Azadirachtin-impregnated traps for the control of Dermanyssus gallinae. Veterinary Parasitology 130, 337342.CrossRefGoogle ScholarPubMed
Makarow, R, Schäfer, S, Albrecht, S, Robert, S, Schütz, S and Kaul, P (2019) Investigation of volatile organic compounds emitted by Anoplophora glabripennis (Moschulsky) using thermal desorption and gas chromatography-mass spectrometry. Microchemical Journal 146, 142148.CrossRefGoogle Scholar
Marangi, M, Cafiero, MA, Capelli, G, Camarda, A, Sparagano, OAE and Giangaspero, A (2009) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Experimental and Applied Acarology 48, 1118.CrossRefGoogle ScholarPubMed
Masoumi, F, Youssefi, MR and Tabari, MA (2016) Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae). Parasitology Research 115, 42394243.CrossRefGoogle Scholar
Mignon, B and Losson, B (2008) Dermatitis in a horse associated with the poultry mite (Dermanyssus gallinae). Veterinary Dermatology 19, 3843.Google Scholar
Mizoguchi, A, Mori, N, Nishida, R and Kuwahara, Y (2003) α-acaridial a female sex pheromone from an alarm pheromone emitting mite Rhizoglyphus robini. Journal of Chemical Ecology 29(7), 16811690. http://dx.doi.org/10.1023/A:1024235100289CrossRefGoogle Scholar
Mizoguchi, A, Murakami, K, Shimizu, N, Mori, N, Nishida, R and Kuwahara, Y (2005) S-isorobinal as the female sex pheromone from an alarm pheromone emitting mite, Rhizoglyphus setosus. Experimental and Applied Acarology 36, 107117.CrossRefGoogle ScholarPubMed
Mori, N and Kuwahara, Y (2000) Comparative studies of the ability of males to discriminate between sexes in Caloglyphus spp. Journal of Chemical Ecology 26, 12991309.CrossRefGoogle Scholar
Mori, N, Kuwahara, Y and Kurosa, K (1996) Chemical ecology of astigmatid mites—XLV. (2R,3R)-Epoxyneral: Sex pheromone of the acarid mite Caloglyphus sp. (acarina: acaridae). Bioorganic & Medicinal Chemistry 4(3), 289295. http://dx.doi.org/10.1016/0968-0896(96)00005-3CrossRefGoogle Scholar
Mori, N, Kuwahara, Y and Kurosa, K (1998) Rosefuran: The sex pheromone of an acarid mite, Caloglyphus sp.. Journal of Chemical Ecology 24(11), 17711779. http://dx.doi.org/10.1023/A:1022399331397CrossRefGoogle Scholar
Nechita, IS, Poirel, MT, Cozma, V and Zenner, L (2015) The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Veterinary Parasitology 214, 348352.CrossRefGoogle ScholarPubMed
Nishimura, K, Shimizu, N, Mori, N and Kuwahara, Y (2003) Chemical ecology of astigmatid mites. LXIV. The alarm pheromone neral functions as an attractant in Schwiebea elongata(Banks)(Acari: Acaridae). Applied Entomology and Zoology 37, 1318.CrossRefGoogle Scholar
Nordenfors, H, Höglund, J and Uggla, A (1999) Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). Journal of Medical Entomology 36, 6872.CrossRefGoogle Scholar
Nunn, F, Bartley, K, Palarea-Albaladejo, J, Innocent, GT, Turnbull, F, Wright, HW and Nisbet, AJ (2019) A novel, high-welfare methodology for evaluating poultry red mite interventions in vivo. Veterinary Parasitology 267, 4246.CrossRefGoogle ScholarPubMed
Oku, K (2009) Effects of density experience on mate guarding behavior by adult male Kanzawa spider mites. Journal of Ethology 27, 279283.CrossRefGoogle Scholar
Pageat, P (2005) Allomone repulsive and kairomone attractive compositions for controlling arachnids. US Patent No. US 200,.Google Scholar
Pfannkoch, E and Whitecavage, J (2000) Comparison of the sensitivity of static headspace GC, Solid Phase Microextraction, and Direct Thermal Extraction for analysis of volatiles in solid matrices. AppNote 6/2000.Google Scholar
Pritchard, J, Küster, T, George, D, Sparagano, O and Tomley, F (2016) Impeding movement of the poultry red mite, Dermanyssus gallinae. Veterinary Parasitology 225, 104107.CrossRefGoogle ScholarPubMed
Rajabpour, A, Mashhadi, ARA and Ghorbani, MR (2018) Acaricidal and repellent properties of some plant extracts against poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Persian Journal of Acarology 7, 8591. doi: doi: 10.22073/PJA.V7I1.34098Google Scholar
Ramsay, GW, Mason, PC and Hunter, AC (1975) Chicken mite (Dermanyssus gallinae) infesting a dog. New Zealand Veterinary Journal 23, 155155.CrossRefGoogle Scholar
Regev, S and Cone, WW (1975) Evidence of Farnesol as a male sex attractant of the twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). Environmental Entomology 4, 307311.CrossRefGoogle Scholar
Regev, S and Cone, WW (1976) Analyses of Pharate female twospotted spider mites for Nerolidol and Geraniol: evaluation for sex attraction of males. Environmental Entomology 5, 133138.CrossRefGoogle Scholar
Regev, S and Cone, WW (1980) The Monoterpene Citronellol, as a male sex attractant of the twospotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). Environmental Entomology 9, 5052.CrossRefGoogle Scholar
Roy, L, Arriaga, A and El Adouzi, M (2018) Composition anti-acariens. 123.Google Scholar
Ryono, A, Mori, N, Okabe, K and Kuwahara, Y (2001) Chemical ecology of astigmatid mites. LVIII. 2-Hydroxy-6-methylbenzaldehyde: female sex pheromone of Cosmoglyphus hughesi Samsinak(Acari: Acaridae). Applied Entomology and Zoology 36, 7781.CrossRefGoogle Scholar
Santana, CB, de L. Souza, JG, Coracini, MDA, Walerius, AH, Soares, VD, da Costa, WF and da S. Pinto, FG (2018) Chemical composition of essential oil from Myrcia oblongata DC and potential antimicrobial, antioxidant and acaricidal activity against Dermanyssus gallinae (De geer, 1778). Bioscience Journal 34, 9961009.CrossRefGoogle Scholar
Sato, M, Kuwahara, Y, Matsuyama, S and Suzuki, T (1993) Chemical ecology of astigmatid mites XXXVII. Fatty acid as food attractant of astigmatid mites, its scopte and limitation. Applied Entomology and Zoology 28, 565569.CrossRefGoogle Scholar
Shimizu, N, Mori, N and Kawahara, Y (2014) Aggregation Pheromone Activity of the Female Sex Pheromone, β-Acaridial, in Caloglyphus polyphyllae (Acari: Acaridae). Bioscience, Biotechnology, and Biochemistry 65(8), 17241728. http://dx.doi.org/10.1271/bbb.65.1724CrossRefGoogle Scholar
Skelton, AC, Cameron, MM, Pickett, JA and Birkett, MA (2010) Identification of neryl formate as the airborne aggregation pheromone for the American House Dust Mite and the European House Dust Mite (Acari: Epidermoptidae). Journal of Medical Entomology 47, 798804.CrossRefGoogle Scholar
Sonenshine, DE (1985) Pheromones and other semiochemicals of the Acari. Annual Review of Entomology 30, 128.CrossRefGoogle ScholarPubMed
Sparagano, O, Pavlićević, A, Murano, T, Camarda, A, Sahibi, H, Kilpinen, O, Mul, M, Van Emous, R, Le Bouquin, S, Hoel, K and Cafiero, M A (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Control of Poultry Mites (Dermanyssus) 48, 310. doi: 10.1007/978-90-481-2731-3_2CrossRefGoogle ScholarPubMed
Sparagano, OAE, George, DR, Harrington, DWJ and Giangaspero, A (2014) Significance and control of the poultry red mite, Dermanyssus gallinae. Annual Review of Entomology 59, 447466.CrossRefGoogle ScholarPubMed
Steidle, J, Barcari, E, Hradecky, M, Trefz, S, Tolasch, T, Gantert, C, Schulz, S, Steidle, JLM, Barcari, E, Hradecky, M, Trefz, S, Tolasch, T, Gantert, C and Schulz, S (2014) Pheromonal communication in the European House Dust Mite, Dermatophagoides pteronyssinus. Insects 5, 639650.CrossRefGoogle ScholarPubMed
Tabari, MA, Youssefi, MR and Benelli, G (2017) Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitology Research 116, 15451551.CrossRefGoogle ScholarPubMed
Tatami, K, Mori, N, Nishida, R and Kuwahara, Y (2001) 2-Hydroxy-6-methylbenzaldehyde: the female sex pheromone of the house dust mite Dermatophagoides farinae (Astigmata: pyroglyphidae). Medical Entomology and Zoology 52, 279286.CrossRefGoogle Scholar
Wicht, MC, Rodriguez, JG, Smith, WT and Jalil, M (1971) Attractant to Macrocheles muscaedomesticae (Acarina) present in the housefly, Musca domestica. Journal of Insect Physiology 17, 6367.CrossRefGoogle Scholar
Witaliński, W, Dabert, J and Walzl, MG (1992) Morphological adaptation for precopulatory guarding in astigmatic mites (Acari: Acaridida). International Journal of Acarology 18, 4954.CrossRefGoogle Scholar
Yasui, Y (1992) The receptor sites of sex pheromone eliciting precopulatory mate guarding behavior of male predatory mite Macrocheles muscaedomesticae (Scopoli). Journal of Ethology 10, 8183.CrossRefGoogle Scholar
Zeman, P (1988) Surface skin lipids of birds – a proper host kairomone and feeding inducer in the poultry red mite, Dermanyssus gallinae. Experimental and Applied Acarology 5, 163173.CrossRefGoogle ScholarPubMed
Zeman, P and Zelezny, J (1985) The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Experimental & Applied Acarology 1, 1722.CrossRefGoogle Scholar
Zhang, Z and Li, G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchemical Journal 95, 127139.CrossRefGoogle Scholar