Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T02:13:19.485Z Has data issue: false hasContentIssue false

Development and evaluation of different PCR-based typing methods for discrimination of Leishmania donovani isolates from Nepal

Published online by Cambridge University Press:  29 January 2010

N. R. BHATTARAI
Affiliation:
Institute of Tropical Medicine Antwerp, Antwerp, Belgium B.P. Koirala Institute of Health Sciences, Dharan, Nepal Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
J. C. DUJARDIN
Affiliation:
Institute of Tropical Medicine Antwerp, Antwerp, Belgium Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
S. RIJAL
Affiliation:
B.P. Koirala Institute of Health Sciences, Dharan, Nepal
S. DE DONCKER
Affiliation:
Institute of Tropical Medicine Antwerp, Antwerp, Belgium
M. BOELAERT
Affiliation:
Institute of Tropical Medicine Antwerp, Antwerp, Belgium
G. VAN DER AUWERA*
Affiliation:
Institute of Tropical Medicine Antwerp, Antwerp, Belgium
*
*Corresponding author: Department of Parasitology, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium. Tel: +32 3 2476586. Fax: +32 3 2476359. E-mail: gvdauwera@itg.be

Summary

Introduction. Leishmania donovani, the causative agent of visceral leishmaniasis in the Indian subcontinent, has been reported to be genetically homogeneous. In order to support ongoing initiatives to eliminate the disease, highly discriminative tools are required for documenting the parasite population and dynamics. Methods. Thirty-four clinical isolates of L. donovani from Nepal were analysed on the basis of size and restriction endonuclease polymorphisms of PCR amplicons from kinetoplast minicircle DNA, 5 nuclear microsatellites, and nuclear loci encoding glycoprotein 63, cysteine proteinase B, and hydrophilic acylated surface protein B. We present and validate a procedure allowing standardized analysis of kDNA fingerprint patterns. Results. Our results show that parasites are best discriminated on the basis of kinetoplast minicircle DNA (14 genotypes) and 1 microsatellite defining 7 genotypes, while the remaining markers discriminated 2 groups or were monomorphic. Combination of all nuclear markers revealed 8 genotypes, while extension with kDNA data yielded 18 genotypes. Conclusion. We present tools that allow discrimination of closely related L. donovani strains circulating in the Terai region of Nepal. These can be used to study the micro-epidemiology of parasite populations, determine the geographical origin of infections, distinguish relapses from re-infection, and monitor the spread of particular variants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. Z., Kuhls, K., Schweynoch, C., Sundar, S., Rijal, S., Shamsuzzaman, A. K. M., Subba Raju, B. V., Salotra, P., Dujardin, J. C. and Schönian, G. (2009). Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infection, Genetics and Evolution 9, 2431.CrossRefGoogle ScholarPubMed
Botilde, Y., Laurent, T., Quispe Tintaya, W., Chicharro, C., Cañavate, C., Cruz, I., Kuhls, K., Schönian, G. and Dujardin, J. C. (2006). Comparison of molecular markers for strain typing of Leishmania infantum. Infection, Genetics and Evolution 6, 440446.CrossRefGoogle ScholarPubMed
Bulle, B., Million, L., Bart, J. M., Gállego, M., Gambarelli, F., Portús, M., Schnur, L., Jaffe, C. L., Fernandez-Barredo, S., Alunda, J. M. and Piarroux, R. (2002). Practical approach for typing strains of Leishmania infantum by microsatellite analysis. Journal of Clinical Microbiology 40, 33913397.CrossRefGoogle ScholarPubMed
Cortes, S., Mauricio, I., Almeida, A., Cristovão, J. M., Pratlong, F., Dedet, J. P. and Campino, L. (2006). Application of kDNA as a molecular marker to analyse Leishmania infantum diversity in Portugal. Parasitology International 55, 277283.CrossRefGoogle ScholarPubMed
Decuypere, S., Vanaerschot, M., Rijal, S., Yardley, V., Maes, L., De Doncker, S., Chappuis, F. and Dujardin, J. C. (2008). Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation. Parasitology 135, 183194.CrossRefGoogle ScholarPubMed
Guerbouj, S., Victoir, K., Guizani, I., Seridi, N., Nuwayri-Salti, N., Belkaid, M., Ben Ismail, R., Le Ray, D. and Dujardin, J. C. (2001). Gp63 gene polymorphism and population structure of Leishmania donovani complex: influence of the host selection pressure? Parasitology 122, 2535.CrossRefGoogle ScholarPubMed
Haralambous, C., Antoniou, M., Pratlong, F., Dedet, J. P. and Soteriadou, K. (2008). Development of a molecular assay specific for the Leishmania donovani complex that discriminates L. donovani/L. infantum zymodemes: a useful tool for typing MON-1. Diagnostic Microbiology and Infectious Diseases 60, 3342.CrossRefGoogle Scholar
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Kemp, S. J. and Noyes, H. A. (2002). Towards a standard battery of microsatellite markers for the analysis of the Leishmania donovani complex. Annals of Tropical Medicine and Parasitology 96, 265270.CrossRefGoogle ScholarPubMed
Joshi, A., Narain, J. P., Prasittisuk, C., Bhatia, R., Hashim, G., Jorge, A., Banjara, M. and Kroeger, A. (2008). Can visceral leishmaniasis be eliminated from Asia? Journal of Vector Borne Diseases 45, 105111.Google ScholarPubMed
Koepfli, C., Mueller, I., Marfurt, J., Goroti, M., Sie, A., Oa, O., Genton, B., Beck, H. P. and Felger, I. (2009). Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. The Journal of Infectious Diseases 199, 10741080.CrossRefGoogle ScholarPubMed
Kuhls, K., Keilonat, L., Ochsenreither, S., Schaar, M., Schweynoch, C., Presber, W. and Schönian, G. (2007). Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes and Infection 9, 334342.CrossRefGoogle ScholarPubMed
Laurent, T., Rijal, S., Yardley, V., Croft, S., De Doncker, S., Decuypere, S., Khanal, B., Singh, R., Schönian, G., Kuhls, K., Chappuis, F. and Dujardin, J. C. (2007). Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution 7, 206212.CrossRefGoogle ScholarPubMed
Laurent, T., Van der Auwera, G., Hide, M., Mertens, P., Quispe-Tintaya, W., Deborggraeve, S., De Doncker, S., Leclipteux, T., Bañuls, A. L., Büscher, P. and Dujardin, J. C. (2009). Identification of Old World Leishmania spp. by specific polymerase chain reaction amplification of cysteine proteinase B genes and rapid dipstick detection. Diagnostic Microbiology and Infectious Disease 63, 173181.CrossRefGoogle ScholarPubMed
Marfurt, J., Nasereddin, A., Niederwieser, I., Jaffe, C. L., Beck, H. P. and Felger, I. (2003). Identification and differentiation of Leishmania species in clinical samples by PCR amplification of the miniexon sequence and subsequent restriction fragment length polymorphism analysis. Journal of Clinical Microbiology 41, 31473153.CrossRefGoogle ScholarPubMed
Mauricio, I. L., Gaunt, M. W., Stothard, J. R. and Miles, M. A. (2001). Genetic typing and phylogeny of the Leishmania donovani complex by restriction analysis of PCR amplified gp63 intergenic regions. Parasitology 122, 393403.CrossRefGoogle ScholarPubMed
Mauricio, I. L., Stothard, J. R. and Miles, M. A. (2004). Leishmania donovani complex: genotyping with the ribosomal internal transcribed spacer and the mini-exon. Parasitology 128, 263267.CrossRefGoogle ScholarPubMed
Morales, M. A., Chicharro, C., Ares, M., Cañavate, C., Barker, D. C. and Alvar, J. (2001). Molecular tracking of infections by Leishmania infantum. Transactions of The Royal Society of Tropical Medicine and Hygiene 95, 104107.CrossRefGoogle ScholarPubMed
Nasereddin, A., Azmi, K., Jaffe, C. L., Eregat, S., Amro, A., Sawalhah, S., Baneth, G., Schönian, G. and Abdeen, Z. (2009). Kinetoplast DNA heterogeneity among Leishmania infantum in central Israel and Palestine. Veterinary Parasitology 161, 126130.CrossRefGoogle ScholarPubMed
Ochsenreither, S., Kuhls, K., Schaar, M., Presber, W. and Schönian, G. (2006). Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. Journal of Clinical Microbiology 44, 495503.CrossRefGoogle ScholarPubMed
Pandey, K., Yanagi, T., Pandey, B. D., Mallik, A. K., Sherchand, J. B. and Kanbara, H. (2007). Characterization of Leishmania isolates from Nepalese patients with visceral leishmaniasis. Parasitology Research 100, 13611369.CrossRefGoogle ScholarPubMed
Pearson, K. (1926). On the coefficient of racial likeliness. Biometrika 18, 105117.CrossRefGoogle Scholar
Quispe Tintaya, K. W., Ying, X., Dedet, J. P., Rijal, S., De Bolle, X. and Dujardin, J. C. (2004). Antigen genes for molecular epidemiology of leishmaniasis: Polymorphism of cysteine proteinase B and surface metalloprotease glycoprotein 63 in the Leishmania donovani complex. The Journal of Infectious Diseases 189, 10351043.CrossRefGoogle ScholarPubMed
Reithinger, R. and Dujardin, J. C. (2007). Molecular diagnosis of leishmaniasis: current status and future applications. Journal of Clinical Microbiology 45, 2125.CrossRefGoogle ScholarPubMed
Rioux, J. A., Lanotte, G., Serres, E., Pratlong, F., Bastien, P. and Perieres, J. (1990). Taxonomy of Leishmania. Use of isoenzymes. Suggestion for a new classification. Annales de Parasitologie Humaine et Comparée 65, 111125.CrossRefGoogle ScholarPubMed
Schwenkenbecher, J. M., Wirth, T., Schnur, L. F., Jaffe, C. L., Schallig, H., Al-Jawabreh, A., Hamarsheh, O., Azmi, K., Pratlong, F. and Schönian, G. (2006). Microsatellite analysis reveals genetic structure of Leishmania tropica. International Journal for Parasitology 36, 237246.CrossRefGoogle ScholarPubMed
Seridi, N., Amro, A., Kuhls, K., Belkaid, M., Zidane, C., Al-Jawaberh, A. and Schönian, G. (2008). Genetic polymorphism of Algerian Leishmania infantum strains revealed by multilocus microsatellite typing. Microbes and Infection 10, 13091315.CrossRefGoogle Scholar
Singh, N., Curran, M. D., Middleton, D. and Rastogi, A. K. (1999). Characterization of kinetoplast DNA minicircles of an Indian isolates of Leishmania donovani. Acta Tropica 73, 313319.CrossRefGoogle ScholarPubMed
Sundar, S., Mondal, D., Rijal, S., Bhattacharya, S., Ghalib, H., Kroeger, A., Boelaert, M., Desjeux, P., Richter-Airijoki, H. and Harms, G. (2008). Implementation research to support the initiative on the elimination of Kala azar from Bangladesh, India and Nepal – the challenges for diagnosis and treatment. Tropical Medicine and International Health 13, 25.CrossRefGoogle Scholar
Thakur, C. P., Meenakshi Thakur, A. K. and Thakur, S. (2009). Newer strategies for the Kala-azar elimination programme in India. Indian Journal of Medical Research 129, 102104.Google ScholarPubMed
Tobie, E. J., Von Brand, T. and Mehlman, B. (1950). Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense. The Journal of Parasitology 36, 4854.CrossRefGoogle ScholarPubMed
Victoir, K., Bañuls, A. L., Arévalo, J., Llanos-Cuentas, A., Hamers, R., Noël, S., De Doncker, S., Le Ray, D., Tibayrenc, M. and Dujardin, J. C. (1998). The gp63 gene locus, a target for genetic characterization of Leishmania belonging to subgenus Viannia. Parasitology 117, 113.CrossRefGoogle ScholarPubMed
Vuylsteke, M., Peleman, J. D. and Van Eijk, M. J. (2007). AFLP technology for DNA fingerprinting. Nature Protocols 2, 13871398.CrossRefGoogle ScholarPubMed