Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T15:49:03.221Z Has data issue: false hasContentIssue false

The distribution of esterase enzymes in Ascaris lumbricoides

Published online by Cambridge University Press:  06 April 2009

D. L. Lee
Affiliation:
The Molteno Institute, University of Cambridge

Extract

1. The distribution of non-specific esterase and of cholinesterase in Ascaris lumbricoides has been determined using histochemical methods.

2. Non-specific esterase has been shown to be present in the cuticle, in the walls of the excretory canals, in the innervation processes of the muscles, in the coelomocytes, in the oesophageal glands, in the intestine, in the rectal glands, in the male and female reproductive systems, in parts of the nervous system and as 'caps' of enzyme on fat globules in the hypodermis and muscles.

3. Cholinesterase has been detected in the innervation processes and sheath of the muscles, in the sphincter muscles, in the intestine, in the sensory papillae and amphids, and in parts of the nervous system, including a nerve in the spicules.

4. Parts of the nervous system and the innervation processes of the muscles contain an esterase which is not inhibited by cholinesterase inhibitors and it is suggested that there may be esterase, distinct from cholinesterase, involved in nerve transmission.

5. Merocrine secretion of esterase has been observed in the intestine.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldridge, W. N. (1950). Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p–nitrophenyl thiophosphate (E605) and analogues. Biochem. J. 46, 451–60.CrossRefGoogle Scholar
Aldridge, W. N. (1953). Serum esterases. 1. Two types of esterase (A and B) hydrolysing p–nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem. J. 53, 110–17.CrossRefGoogle Scholar
Baldwin, E. & Moyle, V. (1949). A contribution to the physiology and pharmacology of Ascaris lumbricoides from the pig. Brit. J. Pharmacol. 4, 145–52.Google Scholar
Bird, A. F. (1957). Chemical composition of the nematode cuticle. Observations on individual layers and extracts from these layers in Ascaris lumbricoides cuticle. Exp. Parasit. 6, 383403.CrossRefGoogle ScholarPubMed
Bird, A. F. (1958). Further observations on the structure of nematode cuticle. Parasitology, 48, 32–7.CrossRefGoogle ScholarPubMed
Bird, A. F. & Deutsch, K. (1957). The structure of the cuticle of Ascaris lumbricoides var. suis. Parasitology, 47, 319–28.CrossRefGoogle ScholarPubMed
Bueding, E. (1952). Acetylcholinesterase activity of Schistosoma mansoni. Brit. J. Pharmacol. 7, 563–6.Google ScholarPubMed
Carpenter, M. F. P. (1952). The digestive enzymes of Ascaris lumbricoides var. suis; their properties and distribution in the alimentary canal. Dissertation, Univ. Michigan. Univ. Microfilms, Publ. No. 3729. Ann Arbor, Mich., 183 pp.Google Scholar
Cavier, R. (1951). L'équipment enzymatique du liquide coelomique de l'Ascaris du porc, Ascaris lumbricoides Linné 1758. Bull. Soc. Chim. biol., Paris, 33, 1391–9.Google Scholar
Cavier, R., Savel, J. & Monteoliva, M. (1958). Nature et répartition, selon le sexe, des substances lipidiques chez Ascaris lumbricoides Linné, 1758. Bull. Soc. Chim. biol., Paris, 40, 177–87.Google Scholar
Chitwood, B. G. & Chitwood, M. B. (1950). An Introduction to Nematology. Section I (revised edition), 213 pp. Baltimore, Md.: Monumental Printing Company.Google Scholar
Davenport, H. E. (1949). The haemoglobins of Ascaris lumbricoides. Proc. Roy. Soc. B, 136, 255–70.Google ScholarPubMed
Ellenby, C. (1946). Nature of the cyst wall of the potato-root eel-worm Heterodera rostochiensis, Wollenweber, and its permeability to water. Nature, Lond., 157, 302.CrossRefGoogle Scholar
Ellenby, C. (1956). The hardening of the cyst wall of the potato root eelworm. Proc. XIV Internat. Cong. Zool., pp. 373–4. Copenhagen, 1953.Google Scholar
Fairbairn, D. (1955). Lipids of the female reproductive organs in Ascaris lumbricoides. Canad. J. Biochem. Physiol. 33, 31–7.CrossRefGoogle ScholarPubMed
Fairbairn, D. (1956). The muscle and integument lipids in female Ascaris lumbricoides. Canad. J. Biochem. Physiol. 34, 3945.CrossRefGoogle ScholarPubMed
Fairbairn, D. (1957). The biochemistry of Ascaris. Exp. Parasit. 6, 491554.CrossRefGoogle ScholarPubMed
Fairbairn, D. (1960). Nematology: Fundamentals and Recent Advances with Emphasis on Plant Parasitic and Soil Forms. Chapter 30. Editors: Sasser, J. N. & Jenkins, W. A., 480 pp. University of North Carolina Press.Google Scholar
Flury, F. (1912). Zur Chemie und Toxikologie der Ascaridien. Arch. exp. Path. Pharmak. 67, 275392.CrossRefGoogle Scholar
Gomori, G. (1957). Methods in Enzymology, vol. 4. Histochemical methods for enzymes. Editors: Colowick, S. P. & Kaplan, N. O., 979 pp. New York: Academic Press Inc.Google Scholar
Haskins, W. T. & Weinstein, P. P. (1957). The amine constituents from the excretory products of Ascaris lumbricoides and Trichinella spiralis larvae. J. Parasit. 43, 2832.CrossRefGoogle ScholarPubMed
Hirsch, G. C. & Bretschneider, L. H. (1937). Der intraplasmatische Stoffwechsel in den Darmzellen von Ascaris lumbricoides. Protoplasma, 29, 930.CrossRefGoogle Scholar
Hobson, A. D. (1948). The physiology and cultivation in artificial media of nematodes parasitic in the alimentary tract of animals. Parasitology, 38, 183227.CrossRefGoogle ScholarPubMed
Hurlaux, R. (1947). Recherches sur les cellules dites phagocytaires de l'Ascaride du cheval (Parascaris equorum Goeze). Ann. Sci. nat. (Zool.), XI série, 9, 155226.Google Scholar
von Kemnitz, G. (1912). Die Morphologie des Stoffwechsels bei Ascaris lumbricoides. Arch. Zellforsch. 7, 463603.Google Scholar
Krotov, A. I. (1957). Content of acetylcholine-like substances and cholinesterase in Ascaris tissues. Byull. Eksp. Biol. Med. Moscow, 43, 95–7. (Helminth. Abstr. for 1957, 26, 201–2.)Google ScholarPubMed
Lee, D. L. (1958). Digestion in Leidynema appendiculata (Leidy, 1850), a nematode parasitic in cockroaches. Parasitology, 48, 437–47.CrossRefGoogle ScholarPubMed
Lee, D. L. (1960). The distribution of glycogen and fat in Thelastoma bulhõesi (Magalhàes, 1900), a nematode parasitic in cockroaches. Parasitology, 50, 247–59.CrossRefGoogle ScholarPubMed
Lee, D. L. (1961). Localization of esterase in the cuticle of the nematode Ascaris lumbricoides. Nature, Lond., 192, 282–3.CrossRefGoogle Scholar
Lee, D. L. (in press). The histochemical localization of leucine amino-peptidase in Ascaris lumbricoides. Parasitology.Google Scholar
Lewert, R. M. & Lee, C. (1954). Studies on the passage of helminth larvae through host tissues. 1. Histochemical studies on extracellular changes caused by penetrating larvae. 2. Enzymatic activity of larvae in vitro and in vivo. J. Infect. Dis. 95, 1351.CrossRefGoogle Scholar
Lewert, R. M. & Lee, C. (1956). Quantitative studies of the collagenase-like enzymes of cercariae of Schistosoma mansoni and the larvae of Strongyloides ratti. J. Infect. Dis. 99, 114.CrossRefGoogle Scholar
Linford, M. B. (1937). The feeding of some hollow-stylet nematodes. Proc. helm. Soc. Wash. 4, 41–6.Google Scholar
Mellanby, H. (1955). The identification and estimation of acetylcholine in three parasitic nematodes (Ascaris lumbricoides, Litomosoides carinii and the microfilariae of Dirofilaria repens). Parasitology, 45, 287–94.CrossRefGoogle ScholarPubMed
Mueller, J. F. (1929). Studies on the microscopical anatomy and physiology of Ascaris lumbricoides and Ascaris megalocephala. Z. Zellforsch. 8, 362403.CrossRefGoogle Scholar
Nachmansohn, D. & Wilson, I. B. (1955). Methods in Enzymology, Vol. 1. Acetylcholinesterase. Editors: Colowick, S. P. and Kaplan, N. O., 835 pp. New York: Academic Press Inc.Google Scholar
Nimmo-Smith, R. H. & Keeling, J. E. D. (1960). Some hydrolytic enzymes of the parasitic nematode Trichuris muris. Exp. Parasit. 10, 337–55.CrossRefGoogle Scholar
Pearse, A. G. E. (1960). Histochemistry: Theoretical and Applied, 2nd edition, 868 pp. London: J. and A. Churchill Ltd.Google Scholar
Rogers, W. P. (1941). Digestion in parasitic nematodes. II. The digestion of fats. J. Helminth. 19, 3546.CrossRefGoogle Scholar
Rohde, R. A. (1960). Acetylcholinesterase in plant-parasitic nematodes and an anticholinesterase from asparagus. Proc. helm. Soc. Wash. 27, 121–3.Google Scholar
Savel, J. (1955). Études sur la constitution et le métabolisme protéiques d'Ascaris lumbricoides Linné, 1758. Part 2. Rev. Path. comp. 55, 213–82.Google Scholar
Simmonds, R. A. (1958). Studies on the sheath of fourth stage larvae of the nematode parasite Nippostrongylus muris. Exp. Parasit. 7, 1422.CrossRefGoogle ScholarPubMed
Smith, M. H. & Lee, D. L. (in preparation). Formation and distribution of haemoglobin and haematin compounds in Ascaris lumbricoides.Google Scholar
Thorson, R. E. (1956). Proteolytic activity in extracts of the esophagus of adults of Ancylostoma caninum and the effect of immune serum on this activity. J. Parasit. 42, 21–5.CrossRefGoogle ScholarPubMed
Weinstein, P. P. & Haskins, W. T. (1955). Chemical evidence of an excretory function for the so-called excretory system of the filariform larvae of Nippostrongylus muris. Exp. Parasit. 4, 226–43.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1958). The distribution of esterase in the nervous system and other tissues of the insect Rhodnius prolixus. Quart. J. Micr. Sci. 99, 441–50.Google Scholar