Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T09:14:50.136Z Has data issue: false hasContentIssue false

Distribution of schistosome genetic diversity within naturally infected Rattus rattus detected by RAPD markers

Published online by Cambridge University Press:  06 April 2009

V. Barral*
Affiliation:
Laboratoire de Biologie Animale, UMR 5555 du CNRS, Centre de Biologie et d'Ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
S. Morand
Affiliation:
Laboratoire de Biologie Animale, UMR 5555 du CNRS, Centre de Biologie et d'Ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
J. P. Pointier
Affiliation:
Laboratoire de Biologie Marine et Malacologie, Ecole Pratique des Hantes Etudes, Centre de Biologie et d'Ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
A. Théron
Affiliation:
Laboratoire de Biologie Animale, UMR 5555 du CNRS, Centre de Biologie et d'Ecologie tropicale et méditerranéenne, Université 52, Av. de Villeneuve, 66860 Perpignan Cedex, France
*
* Corresponding author. Laboratoire de Biologie Animale, UMR 5555 du CNRS, Centre de Biologie et d'Ecologie tropicale et méditerranéenne, Université, 52 Av. de Villeneuve, 66860 Perpignan Cedex, France. Tel: 33 68 66 21 83. Fax: 33 68 66 22 81. E-mail: parasite@univperp.fr.

Summary

Random amplified polymorphic DNA markers (RAPD) were used to visualize the genetic diversity within and between infrapopulations of Schistosoma mansoni recovered from the natural vertebrate host, Rattus rattus, trapped at an insular Guadeloupean focus. Phenotypes were characterized by the sex of the parasites and by 8 polymorphic markers generated by 3 primers. Among the 212 parasite individuals recovered from 10 infected rats, 78 genotypes were characterized. All the hosts naturally infected harboured multiple parasite genotypes with a maximum diversity of 28 genotypes/host. Phenotypic and genotypic diversity calculated by Shannon-Wiener's indices and Lynch and Milligan's estimators respectively is, on average, greater within than between hosts. Considering the very low snail infection rates observed in this focus and the rapid turnover of the vertebrate hosts, our results suggest that the high mobility of the vertebrate host and/or plurimiracidial snail infections could be factors responsible for parasite genetic diversity within hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1978). The regulation of host population growth by parasitic species. Parasitology 76, 119157.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Gordon, D. M. (1982). Process influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373398.CrossRefGoogle ScholarPubMed
Bandi, C., La Rosa, G., Bardin, M. G., Damiani, G., Comincini, S., Tasciotti, L. & Pozio, E. (1995). Random amplified polymorphic DNA fingerprints of the eight taxa of Trichinella and their comparison with allozyme analysis. Parasitology 110, 401407.Google Scholar
Barbosa, F. S., Coelho, M. U. & Dobbin, J. E. (1954). Qualidades de vetor dos hospederios de Schistosoma mansoni no nordeste do Bresil. II. Duraçao de infestaçao e eliminaçao do cercarias em Australobis glabratus. Publicaciones Avulses Institute Aggeu Magalhaes 3, 7893.Google Scholar
Barral, V., This, P., Imbert-Establet, D., Combes, C. & Delseny, M. (1993). Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers. Molecular and Biochemical Parasitology 59, 211222.Google Scholar
Castiglione, S., Wang, G., Damiani, G., Bandi, C., Bisoffi, S. & Sala, F. (1993). RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp.) clones. Theoretical Applied Genetics 87, 5459.CrossRefGoogle ScholarPubMed
Chalmers, K. J., Waugh, R., Sprent, J. I., Simons, A. J. & Powell, W. (1992). Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69, 465472.Google Scholar
Demeke, T., Adams, R. P. & Chibbar, R. (1992). Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theoretical Applied Genetics 84, 990994.Google Scholar
Despres, L., Imbert-Establet, D., Combes, C., Bonhomme, F. & Monnerot, M. (1991). Isolation and polymorphism in mitochondrial DNA from S. mansoni. Molecular and Biochemical Parasitology 47, 139142.Google Scholar
Despres, L., Imbert-Establet, D., Combes, C. & Bonhomme, F. (1992). Molecular evidence linking Hominid evolution to recent radiation of schistosomes (Platyhelminthes: Trematoda). Molecular Phylogenetics and Evolution 4, 295304.Google Scholar
Dias, Neto E., Pereira De Souza, C., Rollinson, D., Katz, N., Pena, S. D. J. & Simpson, A. J. G. (1993). The random amplification of polymorphic DNA allows the identification of strains and species of schistosomes. Molecular and Biochemical Parasitology 57, 8388.Google Scholar
Duvall, R. H. & Dewitt, w. B. (1967). An improved perfusion technique for recovering adult schistosomes from laboratory animals. American Journal of Tropical and Medical Hygiene 16, 483486.CrossRefGoogle ScholarPubMed
Gustafsson, L. & Gustafsson, P. (1994). Low genetic variation in Swedish populations of the rare species Vicia pisiformis (Fabaceae) revealed with RFLP (rDNA) and RAPD. Plant Systematic Evolution 189, 133148.Google Scholar
Haig, S. M., Rhymer, M. & Heckel, D. G. (1994). Population differentiation in randomly amplified polymorphic DNA of red-cockaded woodpeckers Picoides borealis. Molecular Ecology 3, 581595.CrossRefGoogle ScholarPubMed
Kaukas, A., Johnston, D. A., Kane, R. A. & Rollinson, D. (1994). Restriction enzyme mapping of ribosomal DNA of Schistosoma spindale and S. leiperi (Digenea) and its application to interspecific differentiation. Systematic Parasitology 27, 1317.Google Scholar
King, L. M. & Schaal, B. A. (1989). Ribosomal DNA variation and distribution in Rudbeckia missouriensis. Evolution 43, 11171119.Google ScholarPubMed
Littlewood, D. T. & Johnston, D. A. (1995). Molecular phylogenetics of the four Schistosoma species groups determined with partial 28S rRNA gene sequences. Parasitology 111, 167175.CrossRefGoogle Scholar
Lynch, M. & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 9199.Google Scholar
McCutchan, T. F., Simpson, A. J. G., Mullins, J. A., Sher, A., Nash, T. E., Lewis, F. & Richards, C. (1984). Differentiation of schistosomes by species, strain, and sex by using cloned DNA markers. Proceedings of the National Academy of Sciences, USA 81, 889893.CrossRefGoogle ScholarPubMed
Meijer, G., Megnegneau, B. & Linders, E. G. A. (1994). Variability for isozyme, vegetative compatibility and RAPD markers in natural populations of Phomopsis subordinaria. Mycology Research 98, 267276.CrossRefGoogle Scholar
Minchella, D. J., Lewis, F. A., Sollenberger, K. M. & Williams, J. A. (1994). Genetic diversity of Schistosoma mansoni. Molecular and Biochemical Parasitology 68, 307313.Google Scholar
Minchella, D. J., Sollenberger, K. M. & Pereira De Souza, C. (1995). Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology 11, 217220.Google Scholar
Mitchell, G. F., Garcia, E. G., Wood, S. M., Diasanta, R., Almonte, R., Calica, E., Davern, K. M. & Tiu, W. U. (1990). Studies on the sex ratio of worms in schistosome infections. Parasitology 101, 2734.Google Scholar
Nei, M. & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 74, 52675273.Google Scholar
Pointier, J. P. & Théron, A. (1979). La schistosomose intestinale dans les forêts marécageuses à Pterocarpus de Guadeloupe (Antilles Françaises). Annales de Parasitologie 54, 4356.Google Scholar
Rollinson, D., Imbert-Establet, D. & Ross, G. C. (1986). Schistosoma mansoni from naturally infected Rattus rattus in Guadeloupe: identification, prevalence and enzyme polymorphism. Parasitology 93, 3953.Google Scholar
Théron, A., Pointier, J. P., Morand, S., Imbert-Establet, D. & Borel, G. (1992). Long-term dynamics of natural populations of S. mansoni among Rattus rattus in patchy environment. Parasitology 104, 291298.CrossRefGoogle ScholarPubMed
Théron, A. & Pointier, J. P. (1995). Ecology, dynamics, genetics and divergence of trematode populations in heterogenous environments: the model of Schistosoma mansoni in the insular focus of Guadeloupe. Research and Reviews in Parasitology 55, 4964.Google Scholar
Verneau, O., Thomas, F., De Meeüs, A., Catzeflis, F. & Renaud, F. (1995). Evidence of two genetic entities in Bothriocephalus funiculus (Cestoda) detected by arbitrary-primer polymerase chain reaction random amplified polymorphic DNA fingerprinting. Parasitology Research 81, 591594.CrossRefGoogle ScholarPubMed
Vieira, L. Q., Correa-Oliveira, R., Katz, N., De Souza, C. P., Carvalho, O. S., Araujo, N., Sher, A. & Brindley, P. J. (1991). Genomic variability in field populations of S. mansoni in Brazil as detected with a ribosomal gene probe. American Journal of Tropical and Medical Hygiene 44, 6978.Google Scholar
Walker, T. K., Simpson, A. J. G. & Rollinson, D. (1989). Differentiation of S. mansoni from S. rodhaini using cloned DNA probes. Parasitology 98, 7580.Google Scholar
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.Google Scholar
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, s. v. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 22, 65316535.Google Scholar
Williams, K. (1976). The failure of Pearson's goodness of fit statistic. Statistician 25, 49.CrossRefGoogle Scholar
Zar, J. H. (1984). Testing for goodness of fit. In Biostatistical Analysis. 2nd Edn.Prentice-Hall Inc. New Jersey, USA.Google Scholar