Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T05:13:02.252Z Has data issue: false hasContentIssue false

Dynamics of the parasite Marteilia refringens (Paramyxea) in Mytilus galloprovincialis and zooplankton populations in Alfacs Bay (Catalonia, Spain)

Published online by Cambridge University Press:  11 July 2007

N. CARRASCO
Affiliation:
IRTA, St Carles de la Ràpita, Spain Xarxa de Referència de Recerca i desenvolupament en Aqüicultura de la Generalitat de Catalunya, CRAq, Spain
I. LÓPEZ-FLORES
Affiliation:
Laboratoire de Génétique et Pathologie de IFREMER, La Tremblade, France
M. ALCARAZ
Affiliation:
Institut de Ciències del Mar (CSIC), Barcelona, Spain
M. D. FURONES
Affiliation:
IRTA, St Carles de la Ràpita, Spain Xarxa de Referència de Recerca i desenvolupament en Aqüicultura de la Generalitat de Catalunya, CRAq, Spain
F. C. J. BERTHE
Affiliation:
Canada Research Chair in Aquatic Animal Health, Department of Pathology and Microbiology of Atlantic Veterinary College, University of Edward Prince Island, Charlottetown, Canada
I. ARZUL*
Affiliation:
Laboratoire de Génétique et Pathologie de IFREMER, La Tremblade, France
*
*Corresponding author: Laboratoire de Génétique et Pathologie de IFREMER, La Tremblade, France. Tel: +33 546 762 647. Fax: +33 546 762 611. E-mail: Isabelle.Arzul@ifremer.fr

Summary

Since the first description of Marteilia refringens (Paramyxea) in flat oysters Ostrea edulis in 1968 in the Aber Wrach, Brittany (France), the life-cycle of this parasite has remained unknown. However, recent studies, conducted in the ‘claire’ system, have proposed the planktonic copepod Acartia grani as a potential intermediate host for the parasite. Nevertheless, experimental transmission of the parasite through the copepod has failed. Recent studies in this field have reported the presence of the parasite in zooplankton from the bays of the Delta de l'Ebre, a more complex and natural estuarine environment than that of the claire. As a result, 2 new Marteilia host species were proposed: the copepods Oithona sp. (Cyclopoida) and an indeterminate Harpaticoida. Consequently, the objective of the present work was to study the dynamics of Marteilia in the zooplankton community from one of the bays, Alfacs Bay, as well as the dynamics of the parasite in cultivated mussels during 1 complete year. Six different zooplankton taxa appeared to be parasitized by M. refringens, including copepods (3 Calanoida, Acartia discaudata, A. clausi and A. italica; 1 Cyclopoida, Oithona sp.; and 1 Harpacticoida, Euterpina acutifrons), and larval stages of decapod crustaceans (zoea larvae of Brachyura, probably Portumnus sp.). These taxa are thus proposed as new subjects for study, since they could be intermediate hosts in the infection process of mussels by Marteilia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaraz, M. (1979). Coexistence of congeneric pelagic copepods: The Acartia complex in the ria of Vigo. International Council for the Exploration of the Sea ICES, C.M. 18, 8.Google Scholar
Alcaraz, M. (1980). Niche width and overlap of two coexisting species of Acartia (copepoda: Calanoida), in the ria of Vigo (NW of Spain). International Council for the Exploration of the Sea ICES, C.M. 16, 5.Google Scholar
Alcaraz, M. (1983). Coexistence and segregation of congeneric pelagic Copepods, spatial distribution of the Acartia complex in the ria de Vigo (NW Spain). Journal of Plankton Research 5, 891900.CrossRefGoogle Scholar
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lopman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Research 25, 33893402.Google Scholar
Audemard, C. (2001). Stratégie d'utilisation de différentes espèces animales par le parasite Marteilia refringens pour assurer son cycle biologique. Ph.D. thesis, Universite de Perpignan, Perpignan, France.Google Scholar
Audemard, C., Barnaud, A., Collins, C. M., Le Roux, F., Sauriau, P. G., Coustau, C., Blachier, P. and Berthe, F. C. J. (2001). Claire ponds as an experimental model for Marteilia refringens life-cycle studies: new perspectives. Journal of Experimental Marine Biology and Ecology 257, 87108.CrossRefGoogle ScholarPubMed
Audemard, C., Le Roux, F., Barnaud, A., Collins, C. M., Sautour, B., Sauriau, P. G., De Montaudouin, X., Coustau, C., Combes, C. and Berthe, F. (2002). Needle in a haystack: involvement of the copepoda Paracartia grani in the life-cycle of the oyster pathogen Marteilia refringens. Parasitology 124, 315323.CrossRefGoogle Scholar
Audemard, C., Sajus, M., Barnaud, A., Sautour, B., Sauriau, P. and Berthe, F. (2004). Infection dynamics of Marteilia refringens in flat oyster Ostrea edulis and copepod Paracartia grani in a claire pond of Marennes-Oleron Bay. Diseases fo Aquatic Organisms 61, 103111.CrossRefGoogle Scholar
Balouet, G. (1977). Marteilia refringens – considerations of the life cycle and development of Abers disease in Ostrea edulis. Haplosporidian and Haplosporidian-like diseases of shellfish Symposium, Virginia Institute of Marine Science, Gloucester Point, VA (USA) 41, 6466.Google Scholar
Berthe, F., Le Roux, F., Adlard, R. and Figueras, A. (2004). Marteiliosis in molluscs: a review. Aquatic Living Resources 17, 433448.Google Scholar
Berthe, F. C. J., Pernas, M., Zerabib, M., Haffner, P., Thebault, A. and Figueras, A. J. (1998). Experimental transmission of Marteilia refringens with special consideration of its life cycle. Diseases of Aquatic Organisms 34, 135144.Google Scholar
Camacho, A., Villalba, A., Beiras, R. and Labarta, U. (1997). Absortion efficiency and condition of cultured mussels (Mytilus edulis galloprovincialis LINNAEUS) of Galicia (NW Spain) infected by parasites Marteilia refringens (Grizel et al.) end Myticola intestinalis (Steven). Journal of Shellfish Research 16, 7782.Google Scholar
Carrasco, N., Arzul, I., Furones, D., Chollet, B., Robert, M., Joly, J. P. and Berthe, F. (2005). Comparative experimental infection of Marteilia spp. from mussels and oysters in the copepod Paracartia grani. The 12th EAFP International Conference on Diseases of Fish and Shellfish, Copenhagen, Denmark, pp. P-206.Google Scholar
Carrasco, N., López-Flores, I., Alcaraz, M., Furones, M. D., Berthe, F. C. J. and Arzul, I. (2007). First record of a Marteilia parasite (Paramyxea) in zooplankton populations from a natural estuarine environment. Aquaculture (in the Press).CrossRefGoogle Scholar
Comps, M. (1970). Observations sur les causes d'une mortalité anormal des huîtres plates dans le bassin de Marennes. Revue des Travaux de l'Institut des Pêches Maritimes 34, 317326.Google Scholar
Goulletquer, F. and Héral, M. (1997). History, present conditions and future of the molluscan fisheries of North America and Europe. Marine molluscan production trends in France: from fisheries to aquaculture. Marine Fisheries Review, NOAA, Technical Report NMFS 129, 137164.Google Scholar
Grizel, H. (1977). Marteilia refringens and oyster disease – recent observations. Haplosporidian and Haplosporidian-like diseases of shellfish symposium. Virginia Institute of Marine Science, Gloucester Point, VA (USA) 41, 3839.Google Scholar
Le Roux, F., Audemard, C., Barnaud, A. and Berthe, F. (1999). DNA probes as potential tools for the detection of Marteilia refringens. Marine Biotechnology 1, 588597.CrossRefGoogle Scholar
Le Roux, F., Lorenzo, G., Peyret, P., Audemard, C., Figueras, A., Vivares, C., Gouy, M. and Berthe, F. (2001). Molecular evidence for the existence of two species of Marteilia in Europe. Journal of Eukaryotic Microbiology 48, 449454.Google Scholar
López-Flores, I., De La Herran, R., Garrido-Ramos, M., Navas, J., Ruiz-Rejón, C. and Ruiz-Rejón, M. (2004). The molecular diagnosis of Marteilia refringens and differentiation between Marteilia strains infecting oysters and mussels based on the rDNA IGS sequence. Parasitology 129, 411419.Google Scholar
Lynch, S. A., Armitge, D. V., Wylde, S., Mulcahy, M. F. and Culloty, S. E. (2006 a). Inventory of benthic macroinvertebrates and zooplankton in several European Bonamia ostreae-endemic areas and their possible role in the life cycle of this parasite. Marine Biology 149, 14771487.CrossRefGoogle Scholar
Lynch, S. A., Armitge, D. V., Coughtan, J., Mulcahy, M. F. and Culloty, S. E. (2006 b). Investigating the possible role of benthic macroinvertebrates and zooplankton in the life cycle of the haplosporidian Bonamia ostreae. Experimental Parasitology (in the Press). doi: 10.1016/j.exppara.2006.09.021.Google ScholarPubMed
Novoa, B., Posada, D. and Figueras, A. (2005). Polymorphisms in the sequences of Marteilia internal transcribed spacer region of the ribosomal RNA genes (ITS-1) in Spain: genetic types are not related with bivalve hosts. Journal of Fish Diseases 28, 331338.Google Scholar
Riley, G. A., Stommel, H. and Bumpus, D. F. (1949). Quantitative ecology of the plankton of the Western North Atlantic. Bulletin of the Burgham Oceanographic College 12, 1169.Google Scholar
Robledo, J. A. F. and Figueras, A. (1995). The effects of culture-site, depth, season, and stock source on the prevalence of Marteilia refringens in cultured mussels (Mytilus galloprovincialis LMK.) from Galicia, Spain. Journal of Parasitology 81, 354363.Google Scholar
Sanger, F., Nicklen, S. and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the Natural Academy of Sciences, USA 74, 54635467.CrossRefGoogle ScholarPubMed
Skovgaard, A. and Saiz, E. (2006). Seasonal ocurrence and role of protistan parasites in coastal marine zooplankton. Marine Ecology Progress Series 327, 3749.CrossRefGoogle Scholar
Turner, J. T. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43, 255266.Google Scholar
Villalba, A., Mourelle, S. G., Carballal, M. J. and López, M. C. (1993). Effects of infection by the protistan parasite Marteilia refringens on the reproduction of cultured mussels Mytilus galloprovincialis in Galicia (NW Spain). Diseases of Aquatic Organisms 17, 205213.Google Scholar