Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T18:34:11.587Z Has data issue: false hasContentIssue false

The envelope surrounding Polymorphus minutus (Goeze, 1782) (Acanthocephala) during its development in the intermediate host, Gammarus pulex

Published online by Cambridge University Press:  06 April 2009

D. W. T. Crompton
Affiliation:
The Molteno Institute, University of Cambridge

Extract

1. The envelope surrounding Polymorphus minutus during its development in Gammarus pulex has been found to be a capsule produced by a wound healing haemocytic reaction of the host. The haemocytic reaction is stimulated when the parasite stretches the connective tissue serosa of the host's gut.

2. The capsule is a thin, acellular structure, consisting of a protein-carbohydrate complex like that constituting host connective tissue. This material is produced and deposited by the haemocytes.

3. The ability of the haemocytes to produce this protein-carbohydrate material is considered to be the mechanism which ensures the growth of the capsule during the subsequent development of the parasite in the haemocoel.

4. A second layer appears within the capsule just before the parasite reaches the cystacanth stage. This layer is believed to be produced by the parasite.

5. The relevant literature is reviewed, and it appears that the envelopes surrounding all developing Acanthocephala, which have been studied to date, are probably capsules originating in the manner described above.

I am very grateful to Dr P. Tate for advice and encouragement during this work, and to Dr George Salt, F.R.S., for helpful discussions and criticism of the manuscript.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bettelheim-Jevons, F. R. (1958). Protein-carbohydrate complexes. Adv. Protein Chem. 13, 35105.CrossRefGoogle ScholarPubMed
Campbell, F. L. (1929). The detection and estimation of insect chitin. Ann. ent. Soc. Am. 22, 401–26.CrossRefGoogle Scholar
Crompton, D. W. T. (1963). Morphological and histochemical observations on Polymorphus minutus (Goeze, 1782), with special reference to the body wall. Parasitology, 53, 663–85.CrossRefGoogle Scholar
Day, M. F. (1952). Wound healing in the gut of the cockroach Periplaneta. Aust. J. scient. Res. B, 5, 282–9.Google ScholarPubMed
DeGiusti, D. L. (1949). The life cycle of Leptorhynchoides thecatus (Linton), an acanthocephalan of fish. J. Parasit. 35, 437–60.CrossRefGoogle ScholarPubMed
Goodey, J. B. (1957). Laboratory methods for work with plant and soil nematodes. Tech. Bull. 2, Min. Agric. Fish, and Food. London: H.M.S.O.Google Scholar
Greef, R. (1864). Untersuchungen über den Bau und die Naturgeschichte von Echinorhynchus miliarius Zenker (E. polymorphus). Arch. Naturgesch. 30, Bd. 1, 98140.Google Scholar
Hopp, W. B. (1954). Studies on the morphology and life cycle of Neoechinorhynchus emydis (Leidy) an acanthocephalan parasite of the map turtle Graptemys geographica (Le Sueur). J. Parasit. 40, 284–99.CrossRefGoogle Scholar
Hynes, H. B. N. & Nicholas, W. L. (1957). The development of Polymorphus minutus (Goeze, 1782) (Acanthocephala) in the intermediate host. Ann. trop. Med. Parasit. 51, 380–91.CrossRefGoogle ScholarPubMed
Kaiser, J. E. (1893). Die Acanthocephalen und ihre Entwickelung. Bibl. Zool. 2, Leipzig, 7, 1148.Google Scholar
Kates, K. C. (1943). Development of the swine thornheaded worm Macracanthorhynchus hirudinaceus, in its intermediate host. Am. J. vet. Res. 4, 173–81.Google Scholar
Lison, L. (1936). Histochimie Animale. Paris: Gauthier-Villars.Google Scholar
Meyer, A. (1938). Die plasmodiale Entwicklung und Formbildung des Riesenkratzers (Macracanthorhynchus hirudinaceus (Pallas)). iii. Zool. Jb. 64, 131–97.Google Scholar
Miller, M. A. (1943). Studies on the developmental stages and glycogen metabolism of Macracanthorhynchus hirudinaceus in the Japanese beetle larva. J. Morph. 73, 1942.CrossRefGoogle Scholar
Moore, D. V. (1946 a). Studies on the life history and development of Moniliformis dubius Meyer, 1933. J. Parasit. 32, 257–71.CrossRefGoogle ScholarPubMed
Moore, D. V. (1946 b). Studies on the life history and development of Macracanthorhynchus ingens Meyer 1933, with a redescription of the adult worm. J. Parasit. 32, 387–99.CrossRefGoogle ScholarPubMed
Moore, D. V. (1962). Morphology, life history and development of the acanthocephalan Mediorhynchus grandis Van Cleave, 1916. J. Parasit. 48, 7686.CrossRefGoogle Scholar
Pantin, C. F. A. (1959). Notes on Microscopical Technique for Zoologists. Cambridge University Press.Google Scholar
Pearse, A. G. E. (1960). Histochemistry. Theoretical and Applied, 2nd ed. London: J. and A. Churchill Ltd.Google Scholar
Pflugfelder, O. (1956). Abwehrreaktion der Wirtstiere von Polymorphus boschadis Schr. (Acanthocephala). Z. Parasitenk. 17, 371–82.CrossRefGoogle Scholar
Salt, G. (1963). The defence reactions of insects to metazoan parasites. Parasitology, 53, 527642.CrossRefGoogle ScholarPubMed
Salton, M. R. J. (1958). The lysis of micro-organisms by lysozyme and related enzymes. J. gen. Microbiol. 18, 481–90.CrossRefGoogle ScholarPubMed
Schneider, A. (1871). On the development of Echinorhynchus gigas. Ann. Mag. nat. Hist. 7, 441–3.CrossRefGoogle Scholar
Villot, A. (1885). Sur l'état larvaire et l'hôte intermediaire de l'Echinorhynchus clavaeceps Zeder. Zool. Anz. 8, 1922.Google Scholar
Ward, H. L. (1940). Studies on the life history of Neoechinorhynchus cylindratus (Van Cleave 1913) (Acanthocephala). Trans. Amer. micr. Soc. 59, 327–47.CrossRefGoogle Scholar
Wigglesworth, V. B. (1956). The haemocytes and connective tissue formation in an insect, Rhodnius prolixus (Hemiptera). Quart. J. micr. Sci. 97, 8798.Google Scholar