Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T23:08:42.148Z Has data issue: false hasContentIssue false

Evolutionary factors influencing the nature of parasite specificity

Published online by Cambridge University Press:  16 March 2011

M. L. Adamson
Affiliation:
Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
J. N. Caira
Affiliation:
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043 U.S.A.

Summary

This article considers how specificity patterns are shaped during the course of parasite evolution. Parasites are first and foremost specific to site, or microhabitat; host ranges are far more subject to change than is microhabitat. Specificity results from a number of convergent phenomena starting with habits (microhabitat and feeding styles) of free-living progenitors and the way in which the parasitic association arises (e.g., passive oral contamination as opposed to intrusive entry). These bias the types of interaction parasites have with the host, and, through this, the way specificity develops. Host ecology acts as an external factor affecting specificity and predominates in parasites that interact minimally with the hosts physiological and immune systems. Coevolutionary factors are more important in parasites that feed on host tissues or occur in extraintestinal sites. Here, parasites must present the right cues, and respond appropriately to the host defense system. The ability to generalize these cues and responses across host boundaries may act as a constraint on host range. The functional role of the host in the parasite life history also affects the degree of specificity; thus, parasites may act as host generalists in hosts that act as trophic channels to the final host. The role of competition in determining specificity is difficult to assess. However, competition has been reported to influence microhabitat and host distribution through interactive site selection and/or competitive seclusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, M. L. (1981 a). Gyrinicola batrachiensis (Walton, 1929) n. comb. (Oxyuroidea; Nematoda) from tadpoles in eastern and central Canada. Canadian Journal of Zoology 59, 1344–50.CrossRefGoogle Scholar
Adamson, M. L. (1981 b). Development and transmission of Gyrinicola batrachiensis (Walton, 1929) Adamson, 1981 (Pharynngodonidae; Oxyuroidea). Canadian Journal of Zoology 59, 1351–67.CrossRefGoogle Scholar
Adamson, M. L. (1981 c). Studies on gametogenesis in Gyrinicola batrachiensis (Walton, 1929) (Oxyuroidea; Nematoda). Canadian Journal of Zoology 59, 1368–76.Google Scholar
Adamson, M. L. (1981 d). Seasonal changes in populations of Gyrinicola batrachiensis (Walton, 1929) in wild tadpoles. Canadian Journal of Zoology 59, 1377–86.Google Scholar
Adamson, M. L. (1984). L'Haplodiploidie des Oxyurida. Incidence de ce phénomene dans le cycle evolutif. Annales de Parasitologie Humaine et Comparée 59, 387413.CrossRefGoogle Scholar
Adamson, M. L. (1986). Modes of transmission and evolution of life histories in zooparasitic nematodes. Canadian Journal of Zoology 64, 1375–84.CrossRefGoogle Scholar
Adamson, M. L. (1989 a). Constraints in the evolution of life histories in zooparasitic Nematoda. In Current Concepts in Parasitology. (ed. Ko, R. C.), pp. 221–53.Hong Kong: Hong Kong University Press.Google Scholar
Adamson, M. L. (1989 b). Evolutionary biology of the Oxyurida (Nematoda): Biofacies of a haplodiploid taxon. Advances in Parasitology 28, 175228.CrossRefGoogle ScholarPubMed
Adamson, M. L. & Ludwig, D. (1993). Oedipal mating as a factor in sex allocation in haplodiploids. Philosophical Transactions of the Royal Society,London, B 338, 195202.Google Scholar
Adamson, M. L. & Nasher, A. K. (1984). Pharyngodonids (Oxyuroidea; Nematoda) of Agama adramitana in Saudi Arabia with notes on Parapharyngodon. Canadian Journal of Zoology 62, 2600–09.Google Scholar
Adamson, M. L. & Nasher, A. K. (1985). Pharyngodonidae (Oxyuroidea; Nematoda) of Agama yemenensis in Saudi Arabia: hypothesis on the origin of pharyngodonids of herbivorous hosts. Systematic Parasitology 6, 299318.Google Scholar
Adamson, M. L. & Noble, S. (1992). Structure of the pinworm (Oxyurida; Nematoda) guild in the hindgut of the American cockroach, Periplaneta americana. Parasitology 104, 497507.Google ScholarPubMed
Adamson, M. L. & Noble, S. (1993). Interspecific and intraspecific competition among pinworms in the hindgut of Periplaneta americana. Journal of Parasitology 79, 50–6.CrossRefGoogle Scholar
Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. J. (1978). Erythrocyte entry by malaria merozoites. A moving junction between erythrocyte and parasite. Journal of Cell Biology 77, 7282.CrossRefGoogle Scholar
Alexander, J. & Russell, D. G. (1992). The interaction of Leishmania species with macrophages. Advances in Parasitology 31, 175254.CrossRefGoogle Scholar
Anderson, R. C. (1984). The origins of zooparasitic nematodes. Canadian Journal of Zoology 62, 317–28.CrossRefGoogle Scholar
Anderson, R. C. (1993). Nematode Parasites of Vertebtrates. Their Transmission and Development. Wallingford, Oxon, UK: Cabi.Google Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite induced host mortalities. Parasitology 85, 373–91.CrossRefGoogle ScholarPubMed
Bartlett, C. M. & Anderson, R. C. (1980). Filarioid nematodes (Filarioidea; Onchocercidae) of Corvus brachyrhynchos brachyrhynchos Brehm in Southern Ontario, Canada and a consideration of the epizootiology of avian filariasis. Systematic Parasitology 2, 77102.Google Scholar
Bates, R. M. & Kennedy, C. R. (1990). Interactions between the acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in rainbow trout: testing the exclusion hypothesis. Parasitology 100, 435–4.CrossRefGoogle Scholar
Baudoin, M. (1975). Host castration as a parasitic strategy. Evolution 29, 335–52.Google Scholar
Beveridge, I. (1982). Evolution of the strongyloid nematodes of Australian marsupials. Mémoires du Museum national d'Histoire naturelle, Serie A, Zoologie 123, 8791.Google Scholar
Bliska, J. B., Galan, J. E. & Falkow, S. (1993). Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73, 903–20.Google ScholarPubMed
Bower, S. M. & woo, P. T. K. (1977). Cryoptobia catostomi: incubation in plasma of susceptible and refractory fishes. Experimental Parasitology 43, 63—8.Google Scholar
Braun Breton, C. & Pereira DA Silva, L. H. (1993). Malaria proteases and red blood cell invasion. Parasitology Today 9, 92–6.Google Scholar
Brooks, D. R. (1980 a). Allopatric speciation and noninteractive parasite community structure. Systematic Zoology 29, 192203.Google Scholar
Brooks, D. R. (1980 b). Brooks’ response to Holmes and Price. Systematic Zoology 29, 214–15.CrossRefGoogle Scholar
Brugerolle, G. (1991). Cell organisation in free-living amitochondriate heterotrophic flagellates. In The Biology of Free-hiving Heterotrophic Flagellates. (ed. Patterson, D. J. & Larsen, J.), pp. 133–48. Oxford: The Systematics Association Special Volume No. 45.Clarendon PressGoogle Scholar
Brugerolle, G. & Mignot, J.-P. (1979). Observations sur le cycle, l'ultrastructure et la position systématique de Spiromonas perforans (Bodo perforans Hollande,1938), flagelle parasite de Chilomonas paramecium: ses relations avec les dinoflagelles et les sporozoaires. Protistologica 15, 183–96.Google Scholar
Bush, A. O. & Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142–52.CrossRefGoogle Scholar
Caira, J. N. (1989). A revision of the North American papillose Allocreadiidae (Digenea) with independent cladistic analyses of larval and adult forms. Bulletin of the University of Nebraska State Museum 11, 158.Google Scholar
Carvalho, A. L. De, M. & Deane, M. P. (1974). Trypanosomatidae isolated from Zelus leucogrammus (Perty, 1834) (Hemiptera; Reduviidae) with a discussion of flagellates of insectivorous bugs. Journal of Protozoology 21, 58.CrossRefGoogle ScholarPubMed
Combes, C. (1991). Ethological aspects of parasite transmission. The American Naturalist 138, 866–80.CrossRefGoogle Scholar
Daggett, P. M., Dollahon, N. & Janovy, J. (1972). Herpetomonas megaseliae sp. n. (Protozoa; Trypanosomatidae) from Magaselia scalaris (Loew, 1866) Schmitz, 1929 (Diptera; Phoridae). Journal of Parasitology 58, 946–9.Google Scholar
Damian, R. T. (1987). Presidential address. The exploitation of host immune responses by parasites. Journal of Parasitology 73, 113.CrossRefGoogle Scholar
Despommier, D. D. (1993). Trichinella spiralis and the concept of niche. Journal of Parasitology 79, 472–82.CrossRefGoogle ScholarPubMed
Dobson, A. P. (1985). The population dynamics of competition between parasites. Parasitology 91, 317–47.CrossRefGoogle ScholarPubMed
Dobson, A. P. (1987). The population biology of parasite induced changes in host behaviour. Quarterly Review of Biology 63, 131–65.Google Scholar
Dobson, A. P. & Pacala, S. W. (1992). The parasites of Anolis lizards in the northern Antilles. II. The structure of the parasite community. Oecologia 91, 118–25.CrossRefGoogle Scholar
Foissner, W. & Foissner, I. (1984). First record of an ectoparasitic flagellate on ciliates: an ultrastructural investigation of the morphology and the mode of attachment of Spiromonas gonderi nov. spec. (Zoomastigophora; Spiromonadida) invading the pellicle of ciliates of the genus Colpoda (Ciliophora; Colpodidae) Protistologica 20, 635–48.Google Scholar
Fretwell, S. D. & Lucas, H. L. JR. (1970). On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19, 1636.CrossRefGoogle Scholar
Grewal, P. S., Gaugler, R. & Lewis, E. E. (1993). Host recognition behaviour by entomopathogenic nematodes during contact with insect gut contents. Journal of Parasitology 79, 495503.CrossRefGoogle Scholar
Grey, A. J. & Hayunga, E. G. (1980). Evidence for alternative site selection by Glaridacris laruei (Cestoda: Caryophyllidae) as a result of interspecific competition. Journal of Parasitology 66 371–2.CrossRefGoogle Scholar
Haas, W. (1992). Physiological analysis of cercarial behaviour Journal of Parasitology 78, 243–55.Google Scholar
Halton, D. W. (1967). Observations on the nutrition of digenetic trematodes. Parasitology 57, 639–60.Google Scholar
Hamilton, K. A. & Byram, J. E. (1974). Tapeworm development: the effects of urea on a larval tetraphyllidean. Journal of Parasitology 60, 20–5.CrossRefGoogle ScholarPubMed
Hastings, A. (1987). Can competition be detected using species co-occurrence data? Ecology 68, 117–23.Google Scholar
Holmes, J. C. (1973). Site selection by parasitic helminths: interspecific interactions, site segregation and the importance to development of helminth communities. Canadian Journal of Zoology 51, 333–47.CrossRefGoogle ScholarPubMed
Holmes, J. C. (1986). The structure of helminth communities. In Parasitology-Quo VadiO. (ed. Howell, M. J.) pp. 203–8. Canberra: Proceedings of the 6th International Congress of Parasitology, Australian Academy of Sciences.Google Scholar
Holmes, J. C. & Price, P. W. (1980). Parasite communities: The roles of phylogeny and ecology. Systematic Zoology 29, 203–13.CrossRefGoogle Scholar
Holmes, J. C. & Price, P. (1986). Communities of parasites. In Community Ecology: Patterns and Processes, (ed. Anderson, D. J. & Kikkawa, J.), pp. 187213. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Hominick, W. M. & Davey, K. G. (1972 a). The influence of host stage and sex upon the size and composition of the population of two species of thelastomatids parasitic in the hindgut of Periplaneta americana. Canadian Journal of Zoology 50, 947–54.CrossRefGoogle Scholar
Hominick, W. M. & Davey, K. G. (1972 b). Reduced nutrition as a factor controlling the population of pinworms following endocrine gland removal in Periplaneta americana. Canadian Journal of Zoology 50, 1421–32.CrossRefGoogle Scholar
Hominick, W. M. & Davey, K. G. (1973). Food and spatial distribution of adult male and female pinworms parasitic in the hindgut of Periplaneta americana L. International Journal for Parasitology 3, 759–71.CrossRefGoogle Scholar
Howard, R. J. & Miller, L. H. (1981). Invasion of erythrocytes by malaria merozoites: evidence for specific receptors involved in attachment and entry. In Adhesion and Microorganism Pathogenicity (ed. Elliott, K., O'Connor, M. & Whelan, J.), pp. 202–19. London: (Ciba Foundation Symposium 1980) Pitman Medical.Google Scholar
Hyunga, E. G. (1991). Morphological adaptations of intestinal helminths. Journal of Parasitology 77, 865–73.CrossRefGoogle Scholar
Jennings, J. B. (1968). Feeding, digestion and food storage in two species of temnocephalid flatworms (Turbellaria; Rhabdocoela). Journal of Zoology, London 156, 18.CrossRefGoogle Scholar
Jennings, J. B. (1977). Patterns of nutritional physiology in free-living and symbiotic Turbellaria and their implications for the evolution of entoparasitism in the phylum Platyhelminthes. Acta Zoologica Fennica 154, 6379.Google Scholar
Jaenike, J. (1993). Rapid evolution of host specificity in a parasitic nematode. Evolutionary Ecology 7, 103–8.CrossRefGoogle Scholar
Joyon, L. & Lom, J. (1969). Étude cytologique, systématique et pathologique d'Ichthyobodo necator (Henneguy, 1883). Journal of Protozoology 16, 703–19.Google Scholar
Kennedy, C. R., Bates, R. M. & Brown, A. F. (1989). Discontinuous distribution of the fish acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in Britain and Ireland: an hypothesis. Journal of Fish Biology 34, 607–19.CrossRefGoogle Scholar
Killick-Kendrick, R. (1979). Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida. Vol 2. (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 395460. London: Academic Press.Google Scholar
KO, R. C. (1979). Host-parasite relationship of Angiostrongylus cantonensis. 1. Intracranial transplantation into various hosts. Journal of Helminthology 53, 121–6.CrossRefGoogle ScholarPubMed
KO, R. C. (1981). Host-parasite relationship of Angiostrongylus cantonensis. 1. Angiotropic behaviour and abnormal site development. Zeitschrift für Parasitenkunde 64, 195202.CrossRefGoogle Scholar
Ko, R. C., Fan, L. & Lee, D. L. (1992). Reorganisation of host muscle by secretory/excretory products of infective larvae. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 77–8.CrossRefGoogle Scholar
KO, R. C., Fan, L. & Lee, D. L. (1994). Changes in host muscle induced by excretory/secretory products of larval T. spiralis and T. pseudospiralis. Parasitology (in press).Google Scholar
Kum, W. S. & KO, R. C. (1986). Surface antigens of Angiostrongylus cantonensis developing in permissive and non-permissive hosts. Zeitschrift fur Parasitenkunde 72, 517–24.CrossRefGoogle ScholarPubMed
Lainson, R. & Shaw, J. J. (1979). The role of animals in the epidemiology of South American leishmaniasis. In Biology of the Kinetoplastida. Vol 2. (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 1116. London: Academic Press.Google Scholar
Landau, I. (1974). Hypothèse sur la phylogenie des coccidiomorphes de vèrtebrés. Zeitschrift fur Parasitenkunde 45, 6375.CrossRefGoogle Scholar
Lee, D. L., Ko, R. C, YI, X. Y. & Yeung, M. H. F. (1991). Trichinella spiralis: antigenic epitopes from the stichocytes detected in the hypertrophic nuclei and cytoplasm of parasitized muscle fibres (nurse cells) of the host. Parasitology 102, 117–23.CrossRefGoogle ScholarPubMed
Lee, J. J. (1985 a). Order 4. Retortamonadida. In Illustrated guide to the Protozoa, (ed. Lee, J. J., Hunter, S. H. & Bovee, E. C ), pp. 118–19. Lawrence, Kansas, U.S.A.: Society of Protozoologists.Google Scholar
Lee, J. J. (1985 b). Order 5. Trichomonadida. In Illustrated Guide to the Protozoa, (ed. Lee, J. J., Hunter, S. H. & Bovee, E. C ), PP- 119–27. Lawrence, Kansas, U.S.A.: Society of Protozoologists.Google Scholar
Lee, J. J. (1985 c). Order 7. Diplomonadida. In Illustrated Guide to the Protozoa, (ed. Lee, J. J., Hunter, S. H. & Bovee, E. C ), pp. 130–4. Lawrence, Kansas, U.S.A.: Society of Protozoologists.Google Scholar
Lethbridge, R. C. (1980). The biology of the oncosphere of cyclophyllidean cestodes. Helminthological Abstracts 49A, 5972.Google Scholar
Lev, B., Ward, H., Keusch, G. T. & Perreira, M. E. A. (1986). Lectin activation in Giardia lamblia by host protease: a novel host-parasite interaction. Science 232, 71–3.CrossRefGoogle ScholarPubMed
Levine, N. D. (1985). Phylum II. Apicomplexa Levine, 1970. In Illustrated Guide to the Protozoa, (ed. Lee, J. J., Hunter, S. H. and Bovee, E. C ), pp. 322–74. Lawrence, Kansas, U.S.A.: Society of Protozoologists.Google Scholar
Levins, R. (1962). Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. The American Naturalist 96, 361–73.CrossRefGoogle Scholar
Levins, R. (1963). Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection. The American Naturalist 97, 7590.CrossRefGoogle Scholar
Levins, R. (1968). Evolution in Changing Environments. Princeton, N.J.: Princeton University Press.CrossRefGoogle Scholar
Llewellyn, J. (1965). The evolution of parasitic Platyhelminthes. In Third Symposium of the British Society for Parasitology. (ed. Taylor, A. E. R.), pp. 4778. London: Blackwell Scientific Publications.Google Scholar
May, R. M. (1977). Togetherness among Schistosomes: its effects on the dynamics of the infection. Mathematical Biosciences 35, 301–43.CrossRefGoogle Scholar
Minchella, D. J., Leathers, B. K., Brown, K. M. & Micnair, J. N. (1985). Host and parasites counteradaptation: an example from a freshwater snail. The American Naturalist 126, 843–54.CrossRefGoogle Scholar
Molyneux, D. H. (1977). Vector relationships in the Trypanosomatidae. Advances in Parasitology 15, 182.CrossRefGoogle ScholarPubMed
Mylnikov, A. P. (1991). Diversity of flagellates without mitochondria. In The Biology of Free-Living Heterotrophic Flagellates, (ed. Patterson, D. J. & Larsen, J.), pp. 149–58. Oxford: The Systematics Association Special Volume No. 45. Clarendon Press.Google Scholar
Perkins, F. O. (1976). Zoospores of the oyster pathogen, Dermocystidium marinum. I. Fine structure of the conoid and other sporozoan-like organelles. Journal of Parasitology 62, 959–74.CrossRefGoogle Scholar
Petter, A. J. (1966). Équilibre des éspeces dans les populations des Nématodes parasites du colon des tortues terrestres. Memoires du Museum National d'Histoire Naturelle, Paris, Serie A, Zoologie 39, 1252.Google Scholar
Pike, A. W. (1990). Interpreting parasite host location behaviour. Parasitology Today 6, 343–4.CrossRefGoogle ScholarPubMed
Poulin, R., Curtis, M. A. & Rau, M. E. (1990). Responses of the fish ectoparassite, Salmincola edwardsii (Copepoda) to stimulation, and their implication for host finding. Parasitology 100, 417–22.CrossRefGoogle ScholarPubMed
Quentin, j.-c. & Seureau, C. (1991). Évolution et régulation des cycles parasitaires des Nématodes phasmidiens. 1. — Évolution des cycles vers l'endoparasitisme. Année Biologique 30, 197234.Google Scholar
Rhode, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. The American Naturalist 114, 648–71.CrossRefGoogle Scholar
Rosenzweig, M. L. (1991). Habitat selection and population interactions: the search for mechanism. The American Naturalist 137, S5–S28.CrossRefGoogle Scholar
Schad, G. A. (1963). Niche diversification in a parasitic species flock. Nature 198, 404–6.Google Scholar
Seureau, C. & Quentin, J.- c. (1986). L'insecte Locusta migratoria (Orthoptère; Acrididae): un hote intermediaire experimental modele pour l'ètude des cycles de Nematodes Phasmidiens parasites de vertebres terrestres. Année Biologique 25, 2547.Google Scholar
Smithers, S. R. & Terry, R. J. (1969). The immunology of schistosomiasis. Advances in Parasitology 7, 4193.CrossRefGoogle Scholar
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. 2nd Edition. Cambridge, U.K.: Cambridge University Press.Google Scholar
Sommerville, R. I. & Rogers, W. P. (1987). The nature and action of host signals. Advances in Parasitology 26, 239–93.CrossRefGoogle ScholarPubMed
Sprent, J. F. A. (1969). Nematode larva migrans. New Zealand Veterinary Journal 17, 3948.CrossRefGoogle ScholarPubMed
Stock, T. M. & Holmes, J. C. (1988). Functional relationships and microhabitat distributions of enteric helminths of grebes (Podicepedidae): evidence for interactive communities. Journal of Parasitology 74, 214–27.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. (1987). Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 73144.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. (1990). Habitat selection by helminths: a hypothesis. Parasitology Today 6, 234–7.CrossRefGoogle ScholarPubMed
Taber, S. W. & Pease, C. M. (1990). Paramyxovirus phylogeny: tissue tropism evolves slower than host specificity. Evolution 44, 435–8.CrossRefGoogle ScholarPubMed
Templeton, A. R. & Rothman, E. D. (1974). Evolution in heterogeneous environments. The American Naturalist 108, 409–28.Google Scholar
Théron, A. (1984). Early and late shedding patterns of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. Journal of Parasitology 70, 652–5.CrossRefGoogle ScholarPubMed
Théron, A. (1985). La polymorphisme du rhythme d'émission des cercaires de Schistosoma mansoni et ses relations avec l'écologie de la transmission du parasite. Vie et Milieu 35, 2331.Google Scholar
Théron, A., Bremond, P. & Imbert-Establet, D. (1989). Allelic frequency variation at the MDH-1 locus within Schistosoma mansoni strains from Guadeloupe (French West Indies): ecological interpretation. Comparative Biochemistry and Physiology B 93, 33–7.Google ScholarPubMed
Ward, S. A. (1992). Assessing functional explanations of host specificity. The American Naturalist 139, 883–91.CrossRefGoogle Scholar
Wallace, F. G. (1979). Biology of the Kinetoplastida of Arthropods. In Biology of the Kinetoplastida. Vol 2. (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 213–40. London: Academic Press.Google Scholar
Wehnert, S. D. & woo, P. T. K. (1980). In vivo and in vitro studies on the host specificity of Trypanoplasma salmocytica. Journal of Wildlife Diseases 16, 183–7.CrossRefGoogle Scholar
Weidner, E. (1972). Ultrastructural study of a microsporidian invasion into cells. Zeitschrift fur Parasitenkunde 40, 227–42.CrossRefGoogle ScholarPubMed
Weiser, J. (1985). Phylum Microspora Sprague, 1969. In Illustrated Guide to the Protozoa, (ed. Lee, J. J., Hunter, S. H. & Bovee, E. C.), PP. 375–83. Lawrence, Kansas, U.S.A.: Society of Protozoologists.Google Scholar