Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T11:49:53.709Z Has data issue: false hasContentIssue false

Experimental evidence for costs due to chewing lice in the European bee-eater (Merops apiaster)

Published online by Cambridge University Press:  29 September 2011

H. HOI
Affiliation:
Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstrasse 1a, A- 1160 Vienna, Austria
J. KRIŠTOFÍK
Affiliation:
Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
A. DAROLOVÁ*
Affiliation:
Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
C. HOI
Affiliation:
Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstrasse 1a, A- 1160 Vienna, Austria
*
*Corresponding author: Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia. Tel: 00421 2 593022619; Fax: 00421 2 1 59302646; E-mail: alzbeta.darolova@savba.sk

Summary

Animals frequently host organisms on their surface which can be beneficial, have no effect or a negative effect on their host. Ectoparasites, by definition, are those which incur costs to their host, but these costs may vary. Examples of avian ectoparasites are chewing lice which feed exclusively on dead feather or skin material; therefore, costs to their bird hosts are generally considered small. Theoretically, many possible proximate effects exist, like loss of tissue or food, infected bites, transmission of microparasitic diseases or reduced body insulation due to loss of feathers, which may ultimately also have fitness consequences. Here, we experimentally examined a possible negative impact of 2 feather-eating louse species (Meropoecus meropis and Brueelia apiastri) on male and female European bee-eaters (Merops apiaster) by removing or increasing louse loads and comparing their impact to a control group (lice removed and immediately returned) after 1 month. A negative effect of chewing lice was found on body mass and sedimentation rate and to a lesser extent on haematocrit levels. Males and females lost more weight when bearing heavy louse loads, and were more susceptible to infestations as indicated by the higher sedimentation rate. Our results further suggest differences in sex-specific susceptibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbosa, A., Merino, S., de Lope, F. and Møller, A. P. (2002). Effects of feather lice on flight behavior of male Barn Swallows (Hirundo rustica). The Auk 119, 213216.CrossRefGoogle Scholar
Barclay, R. M. R. (1988). Variation in cost, benefits, and frequency of the nest reuse by barn swallows (Hirundo rustica). The Auk 105, 5360.CrossRefGoogle Scholar
Barnett, L. B. (1970). Seasonal changes in temperature acclimatization of the house sparrow, Passer domesticus. Comparative Biochemistry and Physiology 33, 559578.CrossRefGoogle Scholar
Barlett, C. M. (1993). Lice (Amblycera and Ischnocera) as vectors of Eulimdana spp. (Nematoda: Filarioidea) in charadriiform birds and the necessity of short reproductive periods in adult worms. Journal of Parasitology 79, 8591.CrossRefGoogle Scholar
Blanco, G., de la Puente, J., Corroto, M., Baz, T. and Colas, J. (2001). Condition-dependent immune defence in the Magpie: how important is ectoparasitism? Biological Journal of the Linnean Society 72, 279286. doi: 10.100Qbij1.2000.0503.CrossRefGoogle Scholar
Blanco, G. and Tella, J. L. (2001). Feather mites on birds: costs of parasitism or conditional outcomes? Journal of Avian Biology 32, 271274. doi:10.1111/j.1420-9101.2007.01459.x.CrossRefGoogle Scholar
Bonser, R. H. C. (2001). Mites on birds. Trends in Ecology and Evolution 16, 1819.CrossRefGoogle Scholar
Booth, D. T., Clayton, D. H. and Block, B. A. (1991). Ectoparasites increase energy-metabolism of their hosts. American Zoologist 31, 124.Google Scholar
Booth, D. T., Clayton, D. H. and Block, B. A. (1993). Experimental demonstration of the energetic cost of parasitism in free-ranging host. Proceedings of the Royal Society of London, B 253, 125129.Google Scholar
Calder, W. A. and King, J. R. (1974). Thermal and caloric relations of birds. Journal of Avian Biology 4, 259413.Google Scholar
Carpenter, F. L. (1975). Bird haematocrits: Effects of high altitude and strength of flight. Comparative Biochemistry and Physiology 50A, 415417.CrossRefGoogle Scholar
Chapman, B. R. and George, J. E. (1991). The effects of ectoparasites on cliff swallow grown and survival. In Bird-Parasite Interactions: Ecology, Evolution, and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 6992. Oxford University Press, Oxford, UK.Google Scholar
Clayton, D. H. (1990). Mate choice in experimentally parasitized rock dove: lousy males lose. American Zoologist 30, 251262.CrossRefGoogle Scholar
Clayton, D. H. (1991). Coevolution of avian grooming and ectoparasite avoidance. In Bird-Parasite Interactions: Ecology, Evolution, and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 258289. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Clayton, D. H., Adams, R. J. and Bush, S. E. (2008). Phthiraptera, the Chewing lice. In Parasitic Diseases of Wild Birds (ed. Atkinson, C. T., Thomas, N. J. and Hunter, D. B.), pp. 515526. Wiley-Blackwell, Ames, Iowa, USA.Google Scholar
Clayton, D. H., Lee, P. L., Tompkins, D. M. and Brodie, E. D. III. (1999). Reciprocal natural selection on host-parasitic phenotypes. American Naturalist 154, 261270.CrossRefGoogle Scholar
Conover, W. (1980). Practical Nonparametric Statistics, 2nd Edn.John Wiley, New York, USA.Google Scholar
Cramp, S. (1985). Handbook of the Birds of Europe, the Middle East and North Africa, vol. IV. Oxford University Press, Oxford, UK.Google Scholar
Darolova, A., Hoi, H., Kristofik, J. and Hoi, C. (2001). Horizontal and vertical ectoparasite transmission of three species of Mallophaga, and individual variation in European bee-eaters (Merops apiaster). Journal of Parasitology 87, 256262.CrossRefGoogle Scholar
de Lope, F., Gonzales, G., Perez, J. J. and Møller, A. P. (1993). Increased detrimental effects of ectoparasites on their bird hosts during adverse environmental conditions. Oecologia 95, 234240. doi: 10.1007/BF00323495.CrossRefGoogle ScholarPubMed
Descamps, S., Blondel, J., Lambrechts, M. M., Hurtrez-Bousses, S. and Thomas, F. (2002). Asynchronous hatching in a blue tit population: a test of some predictions related to ectoparasites. Canadian Journal of Zoology 80, 14801484. doi: 10.1139/Z02-144.CrossRefGoogle Scholar
Dik, B. (2006). Erosive stomatitis in a White Pelican (Pelecanus onocrotalus) caused by Piagetiella titan (Malophaga:Menoponidae). Journal of Veterinary Medicine B 53, 153154.CrossRefGoogle Scholar
Dudaniec, R. Y., Kleindorfer, S. and Fessl, B. (2006). Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin's small ground finch (Geospiza fuliginosa). Austral Ecology 31, 8894. doi: 10.1111/j.1442-9993.2006.01553.x.CrossRefGoogle Scholar
Garamszegi, L. Z., Heylen, D., Møller, A. P., Eens, M. and de Lope, F. (2005). Age-dependent health status and song characteristics in the Barn Swallow. Behavioral Ecology 16, 580591. doi: 10.1093/beheco/ari029.CrossRefGoogle Scholar
Gessaman, J. A., Johnson, J. A. and Hoffman, W. (1986). Haematocrits and erythrocyte numbers for Cooper's and Sharp-shinned Hawks. The Condor 98, 9596.CrossRefGoogle Scholar
Gustaffson, L., Nordling, D., Andersson, M. S., Sheldon, B. C. and Quarnstrøm, A. (1994). Infectious diseases, reproductive effort and the cost of reproduction in birds. Proceedings of the Royal Society of London, B 346, 323331.Google Scholar
Harriman, V. B. and Alisauskas, R. T. (2010). Of fleas and geese: the impact of an increasing nest ectoparasite on reproductive success. Journal of Avian Biology 41, 573579. doi: 10.1111/j.1600-048X.2010.05013.x.CrossRefGoogle Scholar
Harrison, G. J. and Harrison, L. R. (1986). Clinical Avian Medicine and Surgery. WB Saunders, London, UK.Google Scholar
Hillgarth, N. (1996). Ectoparasite transfer during mating in Ring-necked Pheasants Phasianus colchicus. Journal of Avian Biology 27, 260262.CrossRefGoogle Scholar
Hoi, H., Darolova, A., König, C. and Kristofik, J. (1998). The relation between colony size, breeding density and ectoparasite loads of adult European bee-eaters (Merops apiaster). Ecoscience 5, 156163.CrossRefGoogle Scholar
Hoi, H., Hoi, C., Kristofik, J. and Darolova, A. (2002). Reproductive success decreases with colony size in the European bee-eater. Ethology Ecology & Evolution 14, 99110.CrossRefGoogle Scholar
Hoi, H., Krištofík, J., Darolová, A. and Hoi, C. (2010). Are parasite intensity and related costs of the milichiid fly Carnus hemapterus related to host sociality? Journal of Ornithology 151, 907913. doi: 10.1007/s10336-010-0529-5.CrossRefGoogle Scholar
Kose, M., Mand, R. and Møller, A. P. (1999). Sexual selection for white tail spots in the Barn Swallow in relation to habitat choice by feather lice. Animal Behaviour 58, 12011205.CrossRefGoogle ScholarPubMed
Krištofík, J., Mašán, P. and Šustek, Z. (1996). Ectoparasites of bee-eaters (Merops apiaster) and arthropods in its nests. Biologia, Bratislava 44, 557570.Google Scholar
Lafferty, K. D. and Kuris, A. M. (1999). How environmental stress affects the impacts of parasites. Limnology and Oceanography 44, 925931.CrossRefGoogle Scholar
Lehmann, T. (1993) Ectoparasites: direct impact on the host fitness. Parasitology Today 9, 813.CrossRefGoogle ScholarPubMed
Lessells, C. M., Avery, M. I. and Krebs, J. R. (1994). Nonrandom dispersal of kin - Why do European bee-eater (Merops apiaster) brothers nest close together. Behavioral Ecology 5, 105113.CrossRefGoogle Scholar
Loye, J. E. and Zuk, M. (ed.) (1991). Bird-Parasite Interactions: Ecology, Evolution and Behaviour. Oxford University Press, Oxford, UK.Google Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects. Academic Press, London, UK.Google Scholar
McKilligan, N. G. (1996). Field experiments on the effect of ticks on breeding success and chick health of cattle egrets. Australian Journal of Ecology 21, 442449.CrossRefGoogle Scholar
Merino, S. and Potti, J. (1995). Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73, 95103.CrossRefGoogle Scholar
Møller, A. P. (1997). Parasitism and the evolution of the host life history. In Host-Parasite Evolution: General Principles and Avian Models (ed. Clayton, D. H and Moore, J.), pp. 105127. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Møller, A. P., de Lope, F. and Saino, N. (2004). Parasitism, immunity, and arrival date in a migratory bird, the barn swallow. Ecology 85, 206219. doi:10.1890/02-0451.CrossRefGoogle Scholar
Potti, J., Moreno, J., Merino, S., Frias, O. and Rodriguez, R. (1999). Environmental and genetic variation in the haematocrit of fledgling pied flycatchers Ficedula hypoleuca. Oecologia 120, 18.CrossRefGoogle ScholarPubMed
Prelezov, P. N., Groseva, N. I. and Goudaheva, D. I. (2006). Pathomorphological changes in the tissues of chickens experimentally infected with biting lice (Insecta: Phthiraptera). Veterinarski Archiv 76, 207215.Google Scholar
Price, M. A. and Graham, O. H. (1997). Chewing and Sucking Lice as Parasites of Mammals and Birds. U.S. Department of Agriculture, Technical Bulletin No. 1849.Google Scholar
Price, R. D., Hellenthal, R. A., Palma, R. L., Johnson, K. P. and Clayton, D. H. (2003). The Chewing Lice: World Checklist and Biological Overview. Illinois Natural History Survey Special Publication 24.Google Scholar
Redpath, S. (1988). Vigilance levels in preening Dunlin Calidris alpina. Ibis 130, 555557.CrossRefGoogle Scholar
Saino, N., Calza, S., Ninni, P. and Møller, A. P. (1999). Barn swallows trade survival against offspring condition and immunocompetence. Journal of Animal Ecology 68, 9991009.CrossRefGoogle Scholar
Samuel, W. M., Williams, E. S. and Rippin, A. B. (1982). Infestations of Piagetiella peralis (Mallophaga: Menoponidae) on juvenile White Pelicans. Canadian Journal of Zoology 60, 951953.Google Scholar
Sanz, J. J., Arriero, E., Moreno, J. and Merino, S. (2001). Female hematozoan infection reduces hatching success but not fledging success in Pied Flycatchers Ficedula hypoleuca. The Auk 118, 750755.CrossRefGoogle Scholar
Schall, J. J., Bennet, A. F. and Putman, R. W. (1982). Lizards infected with malaria: physiological and behavioral consequences. Science 217, 10571059.CrossRefGoogle ScholarPubMed
Svensson, L. (1992). Identification Guide to European Passerines. British Trust for Ornithology, Stockholm.Google Scholar
Szép, T. and Møller, A. P. (2000). Exposure to ectoparasites increases within-brood variability in size and body mass in the sand martin. Oecologia 125, 201207. doi: 10.1007/s004420000447.CrossRefGoogle ScholarPubMed
Thompson, S. N. (1990). Physiological alterations during parasitism and their effects on host behaviour. In Parasitism and Host Behaviour (ed. Barnard, C. J. and Behnke, J. M.), pp 6494. Taylor and Francis, London, UK.Google Scholar
Tompkins, D. M., Jones, T. and Clayton, D. H. (1996). Effect of vertically transmitted ectoparasites on the reproductive success of swifts (Apus apus). Functional Ecology 10, 733740.CrossRefGoogle Scholar
Vas, Z., Csörgö, T., Møller, A. P. and Rózsa, L. (2008). The feather holes on the barn swallow Hirundo rustica and other small passerines are probably caused by Brueelia spp. lice. Journal of Parasitology 94, 14381440.CrossRefGoogle ScholarPubMed
Walther, B. A. and Clayton, D. H. (2005). Elaborate ornaments are costly to maintain: Evidence for high maintenance handicaps. Behavioral Ecology 16, 8995. doi: 10.1093/beheco/arh135.CrossRefGoogle Scholar