Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:23:12.800Z Has data issue: false hasContentIssue false

Human hepatic stellate cells in primary culture are safe targets for Leishmania donovani

Published online by Cambridge University Press:  20 December 2012

O. ROSTAN
Affiliation:
INSERM U1085, IRSET, Université Rennes 1, 2 avenue du Professeur Léon Bernard, F-35043 Rennes, France
F. ROBERT-GANGNEUX
Affiliation:
INSERM U1085, IRSET, Université Rennes 1, 2 avenue du Professeur Léon Bernard, F-35043 Rennes, France Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, 2 avenue du Professeur Léon Bernard, F-35033 Rennes, France
M. LAMBERT
Affiliation:
SFR Biosit UMS 3480 – U 018, Plateforme IBiSA MRic-Photonics, 2 avenue du Professeur Léon Bernard, F-35043 Rennes, France, 35043 Rennes Cedex, France
M. SAMSON
Affiliation:
INSERM U1085, IRSET, Université Rennes 1, 2 avenue du Professeur Léon Bernard, F-35043 Rennes, France
J. P. GANGNEUX*
Affiliation:
INSERM U1085, IRSET, Université Rennes 1, 2 avenue du Professeur Léon Bernard, F-35043 Rennes, France Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, 2 avenue du Professeur Léon Bernard, F-35033 Rennes, France
*
*Corresponding author: Laboratoire de Parasitologie, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France. Tel.: 00332 23 23 44 90; Fax: 00332 23 23 46 29. E-mail address: jean-pierre.gangneux@univ-rennes1.fr

Summary

Leishmania parasites can escape the immune response by invading cell types lacking leishmanicidal mechanisms. Silent persistence of Leishmania parasites in the host organism is responsible for asymptomatic carriage and relapses after cured leishmaniasis. Here, we studied the interaction between Hepatic Stellate Cells (HSC) and Leishmania. An original model of human HSC in primary culture infected with L. donovani was developed. The presence of intracellular parasites was studied and quantified using optical and confocal microscopy. HSC characteristics were studied using microscopy, methylene blue assay, long-term cultures and qPCR. We showed for the first time that human HSC are permissive to L. donovani infection, with no modification of HSC survival, growth rate and proinflammatory and fibrogenic characteristics. Intracellular parasites did not replicate but HSC had no effect on their survival. Indeed, after a 40-day culture, infected HSC cultures transferred on NNN medium yielded new promastigotes that were able to proliferate and efficiently infect new cells. HSC are permissive to L. donovani, with neither parasite killing nor apparent cell damage. Thus, HSC could act as potent sanctuary cells for Leishmania in the liver, which could partially explain parasite reactivation after an asymptomatic carriage or a cured visceral leishmaniasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvar, J., Aparicio, P., Aseffa, A., Den Boer, M., Canavate, C., Dedet, J. P., Gradoni, L., Ter Horst, R., Lopez-Velez, R. and Moreno, J. (2008). The relationship between leishmaniasis and AIDS: the second 10 years. Clinical Microbiology Reviews 21, 334359. doi: 21/2/334 [pii] 10.1128/CMR.00061-07.CrossRefGoogle ScholarPubMed
Alvar, J., Canavate, C., Gutierrez-Solar, B., Jimenez, M., Laguna, F., Lopez-Velez, R., Molina, R. and Moreno, J. (1997). Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clinical Microbiology Reviews 10, 298319.CrossRefGoogle ScholarPubMed
Antoine, J. C., Prina, E., Courret, N. and Lang, T. (2004). Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts. Advances in Parasitology, 58, 168. doi: S0065308X04580016 [pii] 10.1016/S0065-308X(04)58001-6.CrossRefGoogle ScholarPubMed
Arthur, M. J. (2000). Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. American Journal of Physiology Gastrointestinal and Liver Physiology 279, G245249.CrossRefGoogle ScholarPubMed
Bartley, P. B., Ramm, G. A., Jones, M. K., Ruddell, R. G., Li, Y. and McManus, D. P. (2006). A contributory role for activated hepatic stellate cells in the dynamics of Schistosoma japonicum egg-induced fibrosis. International Journal for Parasitology 36, 9931001. doi: S0020-7519(06)00151-2 [pii] 10.1016/j.ijpara.2006.04.015.CrossRefGoogle ScholarPubMed
Basset, D., Faraut, F., Marty, P., Dereure, J., Rosenthal, E., Mary, C., Pratlong, F., Lachaud, L., Bastien, P. and Dedet, J. P. (2005). Visceral leishmaniasis in organ transplant recipients: 11 new cases and a review of the literature. Microbes and Infection 7, 13701375. doi: S1286-4579(05)00191-7 [pii] 10.1016/j.micinf.2005.06.002.CrossRefGoogle Scholar
Bogdan, C. (2008). Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cellular Microbiology 10, 12211234. doi: CMI1146 [pii] 10.1111/j.1462-5822.2008.01146.x.CrossRefGoogle ScholarPubMed
Bogdan, C., Donhauser, N., Doring, R., Rollinghoff, M., Diefenbach, A. and Rittig, M. G. (2000). Fibroblasts as host cells in latent leishmaniosis. Journal of Experimental Medicine 191, 21212130.CrossRefGoogle ScholarPubMed
Bourd-Boittin, K., Le Pabic, H., Bonnier, D., L'Helgoualc'h, A. and Theret, N. (2008). RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. Journal of Biological Chemistry 283, 2600026009. doi: M709829200 [pii] 10.1074/jbc.M709829200.CrossRefGoogle ScholarPubMed
Chang, D., Ramalho, L. N., Ramalho, F. S., Martinelli, A. L. and Zucoloto, S. (2006). Hepatic stellate cells in human schistosomiasis mansoni: a comparative immunohistochemical study with liver cirrhosis. Acta Tropica 97, 318323. doi: S0001-706X(06)00006-4 [pii] 10.1016/j.actatropica.2005.12.006.CrossRefGoogle ScholarPubMed
Corbett, C. E., Duarte, M. I. and Bustamante, S. E. (1993). Regression of diffuse intralobular liver fibrosis associated with visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 49, 616624.CrossRefGoogle ScholarPubMed
Cotterell, S. E., Engwerda, C. R. and Kaye, P. M. (2000). Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-alpha. Blood 95, 16421651.CrossRefGoogle ScholarPubMed
Dereure, J., Duong Thanh, H., Lavabre-Bertrand, T., Cartron, G., Bastides, F., Richard-Lenoble, D. and Dedet, J. P. (2003). Visceral leishmaniasis. Persistence of parasites in lymph nodes after clinical cure. Journal of Infection 47, 7781. doi: S0163445303000021 [pii].CrossRefGoogle ScholarPubMed
Desjeux, P. (2004). Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases 27, 305318. doi: 10.1016/j.cimid.2004.03.004 S0147-9571(04)00023-2 [pii].CrossRefGoogle ScholarPubMed
Duarte, M. I. and Corbett, C. E. (1987). Histopathological patterns of the liver involvement in visceral leishmaniasis. Revista do Instituto de Medicina Tropical de Sao Paulo 29, 131136.CrossRefGoogle ScholarPubMed
Duarte, M. I., de Andrade, H. F. Jr., Takamura, C. F., Sesso, A. and Tuon, F. F. (2009). TGF-beta and mesenchymal hepatic involvement after visceral leishmaniasis. Parasitology Research 104, 11291136. doi: 10.1007/s00436-008-1298-4.CrossRefGoogle ScholarPubMed
el Hag, I. A., Hashim, F. A., el Toum, I. A., Homeida, M., el Kalifa, M. and el Hassan, A. M. (1994). Liver morphology and function in visceral leishmaniasis (Kala-azar). Journal of Clinical Pathology 47, 547551.CrossRefGoogle ScholarPubMed
Friedman, S. L. (2008 a). Hepatic fibrosis – overview. Toxicology 254, 120129. doi: S0300-483X(08)00286-2 [pii] 10.1016/j.tox.2008.06.013.CrossRefGoogle Scholar
Friedman, S. L. (2008 b). Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews 88, 125172. doi: 88/1/125 [pii]10.1152/physrev.00013.2007.CrossRefGoogle ScholarPubMed
Gangneux, J. P., Lemenand, O., Reinhard, Y., Guiguen, C., Guguen-Guillouzo, C. and Gripon, P. (2005). In vitro and ex vivo permissivity of hepatocytes for Leishmania donovani. Journal of Eukaryotic Microbiology 52, 489491. doi: JEU05-3377 [pii] 10.1111/j.1550-7408.2005.00055.x.CrossRefGoogle ScholarPubMed
Gorski, S., Collin, S. M., Ritmeijer, K., Keus, K., Gatluak, F., Mueller, M. and Davidson, R. N. (2010). Visceral leishmaniasis relapse in Southern Sudan (1999–2007): a retrospective study of risk factors and trends. PLoS Neglected Tropical Diseases 4, e705. doi: 10.1371/journal.pntd.0000705.CrossRefGoogle ScholarPubMed
Green, S. J., Nacy, C. A. and Meltzer, M. S. (1991). Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. Journal of Leukocyte Biology 50, 93103.CrossRefGoogle ScholarPubMed
Gressner, A. M., Weiskirchen, R., Breitkopf, K. and Dooley, S. (2002). Roles of TGF-beta in hepatic fibrosis. Frontiers in Bioscience 7, d793807.CrossRefGoogle ScholarPubMed
James, S. L. (1995). Role of nitric oxide in parasitic infections. Microbiological Reviews 59, 533547.CrossRefGoogle ScholarPubMed
Kajaia, M., Morse, D. L., Kamkamidze, G., Butsashvili, M., Chubabria, G., Zenaishvili, O., Kokaia, N. and McNutt, L. A. (2011). Risk factors for relapse of visceral leishmaniasis in Georgia. Tropical Medicine and International Health 16, 186192. doi: 10.1111/j.1365-3156.2010.02694.x.CrossRefGoogle ScholarPubMed
Kaye, P. M., Svensson, M., Ato, M., Maroof, A., Polley, R., Stager, S., Zubairi, S. and Engwerda, C. R. (2004). The immunopathology of experimental visceral leishmaniasis. Immunological Reviews 201, 239253. doi: 10.1111/j.0105-2896.2004.00188.x IMR188 [pii].CrossRefGoogle ScholarPubMed
Kima, P. E. (2007). The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. International Journal for Parasitology 37, 10871096. doi: S0020-7519(07)00131-2 [pii] 10.1016/j.ijpara.2007.04.007.CrossRefGoogle ScholarPubMed
Le Pabic, H., L'Helgoualc'h, A., Coutant, A., Wewer, U. M., Baffet, G., Clement, B. and Theret, N. (2005). Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells. Journal of Hepatology 43, 10381044. doi: S0168-8278(05)00421-6 [pii] 10.1016/j.jhep.2005.05.025.CrossRefGoogle ScholarPubMed
Leclercq, V., Lebastard, M., Belkaid, Y., Louis, J. and Milon, G. (1996). The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. Journal of Immunology 157, 45374545.CrossRefGoogle ScholarPubMed
Marvie, P., Lisbonne, M., L'Helgoualc'h, A., Rauch, M., Turlin, B., Preisser, L., Bourd-Boittin, K., Theret, N., Gascan, H., Piquet-Pellorce, C. and Samson, M. (2010). Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. Journal of Cellular and Molecular Medicine 14, 17261739. doi: JCMM801 [pii] 10.1111/j.1582-4934.2009.00801.x.CrossRefGoogle ScholarPubMed
Mauel, J. (1996). Intracellular survival of protozoan parasites with special reference to Leishmania spp., Toxoplasma gondii and Trypanosoma cruzi. Advances in Parasitology 38, 151.CrossRefGoogle ScholarPubMed
Melo, F. A., Moura, E. P., Ribeiro, R. R., Alves, C. F., Caliari, M. V., Tafuri, W. L. and Calabrese, K. S. (2009). Hepatic extracellular matrix alterations in dogs naturally infected with Leishmania (Leishmania) chagasi. International Journal of Experimental Pathology 90, 538548. doi: IEP681 [pii] 10.1111/j.1365-2613.2009.00681.x.CrossRefGoogle ScholarPubMed
Meurette, O., Lefeuvre-Orfila, L., Rebillard, A., Lagadic-Gossmann, D. and Dimanche-Boitrel, M. T. (2005). Role of intracellular glutathione in cell sensitivity to the apoptosis induced by tumor necrosis factor {alpha}-related apoptosis-inducing ligand/anticancer drug combinations. Clinical Cancer Research 11, 30753083. doi: 11/8/3075 [pii] 10.1158/1078-0432.CCR-04-1764.CrossRefGoogle Scholar
Michel, G., Pomares, C., Ferrua, B. and Marty, P. (2011). Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Tropica 119, 6975. doi: S0001-706X(11)00176-8 [pii] 10.1016/j.actatropica.2011.05.012.CrossRefGoogle ScholarPubMed
Miller, M. A., McGowan, S. E., Gantt, K. R., Champion, M., Novick, S. L., Andersen, K. A., Bacchi, C. J., Yarlett, N., Britigan, B. E. and Wilson, M. E. (2000). Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. Journal of Biological Chemistry 275, 3388333889. doi: 10.1074/jbc.M003671200 M003671200 [pii].CrossRefGoogle ScholarPubMed
Mirkovich, A. M., Galelli, A., Allison, A. C. and Modabber, F. Z. (1986). Increased myelopoiesis during Leishmania major infection in mice: generation of ‘safe targets’, a possible way to evade the effector immune mechanism. Clinical & Experimental Immunology 64, 17.Google ScholarPubMed
Muhanna, N., Horani, A., Doron, S. and Safadi, R. (2007). Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clinical & Experimental Immunology 148, 338347. doi: CEI3353 [pii]10.1111/j.1365-2249.2007.03353.x.CrossRefGoogle ScholarPubMed
Murray, H. W. (2001). Tissue granuloma structure-function in experimental visceral leishmaniasis. International Journal of Experimental Pathology 82, 249267. doi: 199 [pii].CrossRefGoogle ScholarPubMed
Olivier, M., Gregory, D. J. and Forget, G. (2005). Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clinical Microbiology Reviews 18, 293305. doi: 18/2/293 [pii] 10.1128/CMR.18.2.293-305.2005.CrossRefGoogle ScholarPubMed
Reiner, S. L., Zheng, S., Wang, Z. E., Stowring, L. and Locksley, R. M. (1994). Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. Journal of Experimental Medicine 179, 447456.CrossRefGoogle ScholarPubMed
Rittig, M. G. and Bogdan, C. (2000). Leishmania-host-cell interaction: complexities and alternative views. Parasitology Today 16, 292297. doi: S0169-4758(00)01692-6 [pii].CrossRefGoogle ScholarPubMed
Thirunavukkarasu, C., Watkins, S. C. and Gandhi, C. R. (2006). Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology 44, 389398. doi: 10.1002/hep.21254.CrossRefGoogle ScholarPubMed
Tomanovic, N. R., Boricic, I. V., Brasanac, D. C., Stojsic, Z. M., Delic, D. S. and Brmbolic, B. J. (2009). Activated liver stellate cells in chronic viral C hepatitis: histopathological and immunohistochemical study. Journal of Gastrointestinal and Liver Diseases 18, 163167. doi: 5 [pii].Google ScholarPubMed
Tsukada, S., Parsons, C. J. and Rippe, R. A. (2006). Mechanisms of liver fibrosis. Clinica Chimica Acta 364, 3360. doi: S0009-8981(05)00479-1 [pii] 10.1016/j.cca.2005.06.014.CrossRefGoogle ScholarPubMed
Vinas, O., Bataller, R., Sancho-Bru, P., Gines, P., Berenguer, C., Enrich, C., Nicolas, J. M., Ercilla, G., Gallart, T., Vives, J., Arroyo, V. and Rodes, J. (2003). Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38, 919929. doi: 10.1053/jhep.2003.50392 S0270913903006979 [pii].CrossRefGoogle ScholarPubMed
Zambrano-Villa, S., Rosales-Borjas, D., Carrero, J. C. and Ortiz-Ortiz, L. (2002). How protozoan parasites evade the immune response. Trends in Parasitology 18, 272278. doi: S1471492202022894 [pii].CrossRefGoogle ScholarPubMed