Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T08:40:07.805Z Has data issue: false hasContentIssue false

Human recombinant antibodies against Trypanosoma cruzi ribosomal P2β protein

Published online by Cambridge University Press:  18 March 2011

VANINA GRIPPO
Affiliation:
Laboratory of Molecular Biology of Chagas' Disease, Institute for Genetic Engineering and Molecular Biology (INGEBI), CONICET-UBA, 1428 Ciudad autónoma de Buenos Aires, Argentina
LETICIA L. NIBORSKI
Affiliation:
Laboratory of Molecular Biology of Chagas' Disease, Institute for Genetic Engineering and Molecular Biology (INGEBI), CONICET-UBA, 1428 Ciudad autónoma de Buenos Aires, Argentina
KARINA A. GOMEZ*
Affiliation:
Laboratory of Molecular Biology of Chagas' Disease, Institute for Genetic Engineering and Molecular Biology (INGEBI), CONICET-UBA, 1428 Ciudad autónoma de Buenos Aires, Argentina
MARIANO J. LEVIN
Affiliation:
Laboratory of Molecular Biology of Chagas' Disease, Institute for Genetic Engineering and Molecular Biology (INGEBI), CONICET-UBA, 1428 Ciudad autónoma de Buenos Aires, Argentina
*
*Corresponding author: Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI. Vuelta de Obligado 2490, 1428-Ciudad autónoma de Buenos Aires-Argentina. Tel: 00 54 11 47832871. Fax: 00 54 11 47868578. E-mail: gomez@dna.uba.ar

Summary

Patients with chronic Chagas' Heart Disease (cChHD) develop an antibody response that is suspected to be involved in the cardiac pathogenesis. The response against Trypanosoma cruzi ribosomal P proteins is of particular interest, as these antibodies can cross-react with host cardiac receptors causing electrophysiological alterations. To better understand the humoral anti-P response we constructed a single-chain variable fragment library derived from a cChHD patient. The variable heavy and light regions were amplified from bone-marrow RNA and subcloned into the vector pComb3X. The phage library was subsequently panned against T. cruzi ribosomal P2β protein (TcP2β). We obtained 3 different human recombinant antibodies that specifically reacted with TcP2β in ELISA and Western blots. Two of them reacted with the C-terminal region of TcP2β, peptide R13, as the recombinant autoanti-P antibodies from Systemic Lupus Erythematosus (SLE) patients. Interestingly, the third one was specific for TcP2β but did not recognize R13, confirming the specific nature of the anti-P response in Chagas disease. Neither sequence nor VH usage similarities between Chagas and SLE anti-P autoantibodies were observed. Herein, the first human mAbs against TcP2β have been obtained and characterized showing that the humoral anti-P response is directed against the parasite and does not include an autoimmune component.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C. and Barbas, C. F. (2000). Generation of antibody libraries: PCR amplification and assembly of light and heavy-chain coding sequences. In Phage Display: A Laboratory Manual (ed. Barbas, C. F., Burton, D. R., Scott, J. K. and Silverman, G. J.), pp. 9.19.113. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.Google Scholar
Arons, E., Sunshine, J., Suntum, T. and Kreitman, R. J. (2006). Somatic hypermutation and VH gene usage in hairy cell leukaemia. British Journal of Haematology 133, 504512.CrossRefGoogle ScholarPubMed
Brezinschek, H. P., Brezinschek, R. I. and Lipsky, P. E. (1995). Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. Journal of Immunology 155, 190202.CrossRefGoogle ScholarPubMed
Burton, D. R. (2000). Antibody libraries. In Phage Display: A Laboratory Manual (ed. Barbas, C. F., Burton, D. R., Scott, J. K. and Silverman, G. J.), pp. 3.13.18. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.Google Scholar
Chen, L., Williams, B. R., Yang, C. Y., Cevallos, A. M., Bhat, N., Ward, H. and Sharon, J. (2003). Polyclonal Fab phage display libraries with a high percentage of diverse clones to Cryptosporidium parvum glycoproteins. International Journal for Parasitology 33, 281–291.CrossRefGoogle ScholarPubMed
Chiale, P. A., Ferrari, I., Mahler, I., Vallazza, M. A., Elizari, M. V., Rosenbaum, M. R. and Levin, M. J. (2001). Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction. Circulation 103, 17651771.CrossRefGoogle ScholarPubMed
De Oliveira, S. F., Pedrosa, R. C., Nascimento, J. H., Campos de Carvalho, A. C. and Masuda, M. O. (1997). Sera from chronic chagasic patients with complex cardiac arrhythmias depress electrogenesis and conduction in isolated rabbit hearts. Circulation 96, 20312037.CrossRefGoogle ScholarPubMed
Dübel, S., Stoevesandt, O., Taussig, M. J. and Hust, M. (2010). Generating recombinant antibodies to the complete human proteome. Trends in Biotechnology 28, 333339.CrossRefGoogle Scholar
Elizari, M. V., and Chiale, P. A. (1993). Cardiac arrhythmias in Chagas' heart disease. The Journal of Cardiovascular Electrophysiology 4, 596608.CrossRefGoogle ScholarPubMed
Elkon, K., Bonfa, E., Llovet, R., Danho, W., Weissbach, H. and Brot, N. (1988). Properties of the ribosomal P2 protein autoantigen are similar to those of foreign protein antigens. Proceedings of the National Academy of Sciences, USA 85, 51865189.CrossRefGoogle ScholarPubMed
García-Muñoz, R., Panizo, C., Bendandi, M. and Llorente, L. (2009). Autoimmunity and lymphoma: is mantle cell lymphoma a mistake of the receptor editing mechanism. Leukaemia Research 33, 14371439.CrossRefGoogle ScholarPubMed
Grippo, V., Mahler, E., Elias, F. E., Cauerhff, A., Gómez, K. A., Tentori, M. C., Ruiz, A., Vigliano, C. A., Laguens, R. P., Berek, C. and Levin, M. J. (2009). The heavy chain variable segment gene repertoire in chronic Chagas’ heart disease. Journal of Immunology 183, 80158025.CrossRefGoogle ScholarPubMed
Halperin, C. and Rassi, S. (2000). Clinical relevance of invasive electrophysiologic studies in patients with Chagas' disease. In Arrhythmia Management in Chagas' Disease, pp. 8393. Futura Publishing Co., Inc., Armonk, NY, USA.Google Scholar
Hoe, L. N., Wan, K. L. and Nathan, S. (2005). Construction and characterization of recombinant single-chain variable fragment antibodies against Toxoplasma gondii MIC2 protein. Parasitology 131, 759768.CrossRefGoogle ScholarPubMed
Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nature Biotechnology 23, 11051116.CrossRefGoogle ScholarPubMed
Kaplan, D., Ferrari, I., Lopez-Bergami, P., Mahler, E., Levitus, G., Chiale, P., Hoebeke, J., Van Regenmortel, M. H. V. and Levin, M. J. (1997). Antibodies to ribosomal P proteins of Trypanosoma cruzi in Chagas' disease possess functional autoreactivity with heart tissue and differ from anti-P autoantibodies in Lupus. Proceedings of the National Academy of Sciences, USA 94, 1030110306.CrossRefGoogle ScholarPubMed
Kienle, D., Krober, A., Katzenberger, T., Ott, G., Leupolt, E., Barth, T. F. E., Moller, P., Benner, A., Habermann, A., Muller-Hermelink, H. K., Bentz, M., Lichter, P., Dohner, H. and Stilgenbauer, S. (2003). VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood 102, 30033009.CrossRefGoogle ScholarPubMed
Labovsky, V., Smulski, C. R., Gómez, K., Levy, G. and Levin, M. J. (2007). Anti-beta1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clinical & Experimental Immunology 148, 440449.CrossRefGoogle ScholarPubMed
Lefranc, M. P. (2003). IMGT, the international ImMunoGeneTics database. Nucleic Acids Research 31, 307310.CrossRefGoogle ScholarPubMed
Levin, M. J., Vazquez, M., Kaplan, D. and Schijman, A. G. (1993). The Trypanosoma cruzi ribosomal P protein family: classification and antigenicity. Parasitology Today 9, 381384.CrossRefGoogle ScholarPubMed
Levin, M. J., Rossi, R., Levitus, G., Mesri, E., Bonnefoy, S., Kerner, N. and Hontebeyrie-Joskowicz, M. (1990). The cloned C-terminal region of a Trypanosoma cruzi P ribosomal protein harbors two antigenic determinants. Immunology Letters 24, 6973.CrossRefGoogle ScholarPubMed
Levitus, G., Hontebeyrie-Joskowicz, M., van Regenmortel, M. H. and Levin, M. J. (1991). Humoral autoimmune response to ribosomal P proteins in chronic Chagas heart disease. Clinical Experimental Immunology 85, 413417.CrossRefGoogle ScholarPubMed
Lopez Bergami, P., Gomez, K. A., Levy, G. V., Grippo, V., Baldi, A. and Levin, M. J. (2005). The β1 adrenergic effects of antibodies against the C-terminal end of the ribosomal P2 protein of Trypanosoma cruzi associate with a specific pattern of epitope recognition. Clinical & Experimental Immunology 142, 140147.CrossRefGoogle Scholar
Lopez Bergami, P., Scaglione, J. and Levin, M. J. (2001). Antibodies against the carboxyl-terminal end of the Trypanosoma cruzi ribosomal P proteins are pathogenic. FASEB Journal 15, 26022612.CrossRefGoogle ScholarPubMed
Lossos, I. S., Tibshirani, R., Narasimhan, B. and Levy, R. (2000). The inference of antigen selection on Ig genes. Journal of Immunology 165, 5122–5116.CrossRefGoogle ScholarPubMed
Lundquist, R., Nielsen, L. K., Jafarshad, A., Soesoe, D., Christensen, L. H., Druilhe, P. and Dziegiel, M. H. (2006). Human recombinant antibodies against Plasmodium falciparum merozoite surface protein 3 cloned from peripheral blood leukocytes of individuals with immunity to malaria demonstrate antiparasitic properties. Infection and Immunity 74, 32223231.CrossRefGoogle ScholarPubMed
Mahler, E., Hoebeke, J. and Levin, M. J. (2004). Structural and functional complexity of the humoral response against the Trypanosoma cruzi ribosomal P2 beta protein in patients with chronic Chagas’ heart disease. Clinical & Experimental Immunology 136, 527534.CrossRefGoogle ScholarPubMed
Mesri, E. A., Levitus, G., Hontebeyrie-Joskowicz, M., Dighiero, G., Van Regenmortel, M. H. V. and Levin, M. J. (1990). Major Trypanosoma cruzi determinant in Chagas’ heart disease shares homology with the Systemic Lupus Erythematosus ribosomal P protein epitope. Journal of Clinical Microbiology 28, 12191225.CrossRefGoogle ScholarPubMed
Muller, S., Couppez, M., Briand, J. P., Gordon, J., Sautiere, P. and Van Regenmortel, M. H. (1985). Antigenic structure of histone H2B. Biochimica et Biophysica Acta 827, 235246.CrossRefGoogle ScholarPubMed
Roeffen, W. F., Raats, J. M., Teelen, K., Hoet, R. M., Eling, W. M., Van Venrooij, W. J. and Sauerwein, R. W. (2001). Recombinant human antibodies specific for the Pfs48/45 protein of the malaria parasite Plasmodium falciparum. Journal of Biological Chemistry 276, 1980719811.CrossRefGoogle ScholarPubMed
Sepulveda, P., Liegeard, P., Wallukat, G., Levin, M. J. and Hontebeyrie, M. (2000). Modulation of cardiocyte functional activity by antibodies against Trypanosoma cruzi ribosomal P2 protein C terminus. Infection & Immunity 68, 51145119.CrossRefGoogle ScholarPubMed
Skeiky, Y., Benson, D., Guderian, J., Sleath, P., Parsons, M. and Reed, S. (1993). Trypanosoma cruzi acidic ribosomal P protein gene family. Novel P proteins encoding unusual cross-reactive epitopes. Journal of Immunology 151, 55045515.CrossRefGoogle Scholar
Skeiky, Y. A., Benson, D. R., Parsons, M., Elkon, K. B. and Reed, S. G. (1992). Cloning and expression of Trypanosoma cruzi ribosomal protein P0 and epitope analysis of anti-P0 autoantibodies in Chagas’ disease patients. Journal of Experimental Medicine 176, 201211.CrossRefGoogle ScholarPubMed
Smulski, C., Labovsky, V., Levy, G., Hontebeyrie, M., Hoebeke, J. and Levin, M. J. (2006). Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB Journal 20, 13961406.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thie, H., Meyer, T., Schirrmann, T., Hust, M. and Dübel, S. (2008). Phage display derived therapeutic antibodies. Current Pharmaceutical Biotechnology 9, 439446.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of National Academy of Sciences, USA 76, 43504354.CrossRefGoogle ScholarPubMed
Vargas-Madrazo, E., Lara-Ochoa, F. and Almagro, J. C. (1995). Canonical structure repertoire of the antigen-binding site of immunoglobulins suggests strong geometrical restrictions associated to the mechanism of immune recognition. Journal of Molecular Biology 254, 497504.CrossRefGoogle Scholar
Voswinkel, J., Weisgerber, K., Pfreundschuh, M. and Gause, A. (2001). B lymphocyte involvement in ankylosing spondylitis: the heavy chain variable segment gene repertoire of B lymphocytes from germinal center-like foci in the synovial membrane indicates antigen selection. Arthritis Research 3, 189195.CrossRefGoogle ScholarPubMed
Vukovic, P., Chen, K., Qin Liu, X., Foley, M., Boyd, A., Kaslow, D. and Good, M. F. (2002). Single-chain antibodies produced by phage display against the C-terminal 19 kDa region of merozoite surface protein-1 of Plasmodium yoelii reduce parasite growth following challenge. Vaccine 20, 28262835.CrossRefGoogle Scholar
World Health Organization. (2000). Control of Chagas Disease: Second Report of the WHO Expert Committee. Expert Committee on the Control of Chagas Disease (Brasilia, Brasil). WHO Technical Report Series No. 905. World Health Organization, Geneva, Switzerland.Google Scholar
Zampieri, S., Mahler, M., Bluthner, M., Qiu, Z., Malmegrim, K., Ghirardello, A., Doria, A., Van Venrooij, W. J. and Raats, J. M. H. (2003). Recombinant anti-P protein autoantibodies isolated from a human autoimmune library: reactivity, specificity and epitope recognition. Cellular and Molecular Life Science 60, 588598.CrossRefGoogle ScholarPubMed