Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T18:30:29.577Z Has data issue: false hasContentIssue false

Identification of an antigen of Onchocerca volvulus of possible diagnostic use

Published online by Cambridge University Press:  06 April 2009

M. Philipp
Affiliation:
Divisions of Parasitology and Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA
A. Gómez-Priego
Affiliation:
Faculty of Medicine, National Autonomous University of Mexico (UNAM), Commissioned to the Centre for Ecological Research of the Southeast (CIES), San Cristóbal de las Casas, Chiapas, México (Collaborative Centre, PAHO-WHO)
R. M. E. Parkhouse
Affiliation:
Divisions of Parasitology and Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA
M. W. Davies
Affiliation:
Divisions of Parasitology and Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA
N. W. T. Clark
Affiliation:
Divisions of Parasitology and Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA
Bridget M. Ogilvie
Affiliation:
Divisions of Parasitology and Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA
F. Beltrán-Hernández
Affiliation:
Faculty of Medicine, National Autonomous University of Mexico (UNAM), Commissioned to the Centre for Ecological Research of the Southeast (CIES), San Cristóbal de las Casas, Chiapas, México (Collaborative Centre, PAHO-WHO)

Summary

Adult Onchocerca volvulus worms obtained by enzyme digestion from nodules of infected Mexicans were radio-isotope labelled by the chloramine-T or Bolton–Hunter methods. No antigenic determinants were detected in extracts of worms labelled by the chloramine-T method but 3 antigens were detected in extracts of the Bolton–Hunter labelled worms. Two were present in such small amounts that it was impractical to investigate them further, but a major component of mol. wt 20 kDa was purified by gel filtration and used in a serological survey of inhabitants of villages in Southern Mexico. Using the 20 kDa antigen, which is superficially located on both sexes of O. volvulus, sera from both non-endemic and endemic regions were analysed by radio-immunoprecipitation of this antigen. In Southern Mexico, the average sensitivity of the test was 92%, and the specificity 98%. Whilst the 20 kDa antigen did not detect antibodies in the sera of Trinidadians infected with Wuncheria bancrofti or Mansonella ozzardi, this antigen detected high levels of antibodies in Indians exposed to W. bancrofti.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambroise-Thomas, P. (1974). Immunological diagnosis of human filariasis: Present possibilities, difficulties and limitations. Acta Tropica 31, 108 – 28.Google ScholarPubMed
Ambroise-Thomas, P. (1980). Filariasis. In Immunological Investigations of Tropical Parasitic Diseases (ed. Houba, V.), pp. 84103. Edinburgh: Churchill/Livingstone.Google Scholar
Buck, A. A., Anderson, R. I. & MacRae, A. A. (1973). Serum immunoglobulin levels in five villages of the republic of Chad and in onchocerciasis patients with and without microfilaremia. Tropenmedizin und Parasitologie 24, 2131.Google Scholar
Cappuccinelli, P., Martinetto, P., Frentzel-Beyme, R. R. & Sena, L. (1971). Immunoglobulins and parasitic infections. I. Levels of IgG, IgM or IgD in different protozoal and helminthic infections in man. Giornale di Batteriologia e Virol 64, 155161.Google ScholarPubMed
Collins, W. E., Campbell, C. C., Collins, R. C. & Skinner, J. C. (1980). Serologic studies on onchocerciasis in Guatemala using fixed-tissue sections of adult Onchocerca volvulus. American Journal of Tropical Medicine and Hygiene 29, 1220–2.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1980). Observations on Onchocerca volvulus in experimentally infected chimpanzees. Tropenmedizin und Parasitologie 31, 4154.Google ScholarPubMed
Forsyth, K. P., Copeman, D. B., Anders, R. F. & Mitchell, G. F. (1981). The major radioiodinated cuticular antigens of Onchocerca gibsoni microfilariae are neither species nor onchocerca specific. Acta Tropica 38, 343–52.Google ScholarPubMed
Higashi, G. I. & Chowdhury, A. B. (1971). Immunoglobulins and complement in sera from patients with various parasitic infections. Indian Journal of Medical Research 59, 382–9.Google ScholarPubMed
Kagan, I. G. (1963). A review of immunologic methods for the diagnosis of filariasis. Journal of Parasitology 49, 773–98.CrossRefGoogle ScholarPubMed
Marcoullis, G. & Gräsbeck, R. (1976). Preliminary identification and characterization of antigen extracts from Onchocerca volvulus. Tropenmedizin und Parasitologie 27, 314–22.Google ScholarPubMed
Neppert, J. (1974). Cross-reacting antigens among some Filariae and other nematodes. Tropenmedizin und Parasitologie 25, 454–63.Google ScholarPubMed
Neppert, J. (1978). Seroepidemiological aspects of onchocerciasis in Liberia, West Africa.Tropenmedizin und Parasitologie 29, 36–8.Google ScholarPubMed
Niel, G., Gentilini, M., Couture, J., Pinon, J. M. & Danis, M. (1972). Application des extraits antigéniques d'Ascaris suum au diagnostic des filarioses en double diffusion. Valeur comparée a celle des antigènes Onchocerca volvulus et Dipetalonema vitae. Bulletin de la Société de Pathologie Exotique 4, 569–80.Google Scholar
Nnochiri, E. (1964). Observations on onchocercal lesions seen in autopsy specimens in Western Nigeria. Annals of Tropical Medicine and Parasitology 58, 8993.CrossRefGoogle ScholarPubMed
Ouaissi, A., Kouemeni, L. E., Haque, A., Ripel, P. R., Saint-Andre, P. & Capron, A. (1981). Detection of circulating antigens in onchocerciasis. American Journal of Tropical Medicine and Hygiene 30, 1211–18.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterization of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.CrossRefGoogle ScholarPubMed
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980). Changing proteins on the surface of a parasitic nematode. Nature, London 287, 538–40.CrossRefGoogle ScholarPubMed
Philipp, M., Worms, M. J., McLaren, D. J., Ogilvie, B. M., Parkhouse, R. M. E. & Taylor, P. M. (1983). Surface proteins of a filarial nematode: a major soluble antigen and a host-component on the cuticle of Litomosoides carinii. Parasite Immunology (in the Press).Google Scholar
Radermecker, M., Bekhti, A., Poncelet, E. & Salmon, J. (1974). Serum IgG levels in protozoal and helminthic infections. International Archives of Allergy 47, 285–95.CrossRefGoogle Scholar
Sasa, M. (1976). Human Filariasis: a Global Survey of Epidemiology and Control. Baltimore, London, Tokyo: University Park Press.Google Scholar
Schulz-Key, H., Albiez, E. J. & Buttner, D. W. (1977). Isolation of living adult Onchocerca volvulus from nodules. Tropenmedizin und Parasitologie 28, 428–30.Google ScholarPubMed
Thylefors, B. & Tønjum, A. (1980). A three year follow up of ocular onchocerciasis in an area of vector control. Bulletin of the World Health Organization 58, 107–12.Google Scholar
Voller, A. & De Savigny, D. (1981). Diagnostic serology of tropical parasitic diseases. Journal of Immunological Methods 46, 129.CrossRefGoogle ScholarPubMed
Weiss, N., Speiser, F. & Hussain, R. (1981). IgE antibodies in human onchocerciasis. Application of a newly developed radioallergosorbent test (RAST). Acta Tropica 38, 353–62.Google ScholarPubMed
Weiss, N., Hussain, R. & Ottesen, E. A. (1982). IgE antibodies are more species-specific than IgG antibodies in human onchocerciasis and lymphatic filariasis. Immunology 45, 129–37.Google ScholarPubMed