Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:59:00.653Z Has data issue: false hasContentIssue false

The identification of biological species in the genus Heterorhabditis (Nematoda: Heterorhabditidae) by cross-breeding second-generation amphimictic adults

Published online by Cambridge University Press:  06 April 2009

I. Dix
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
A. M. Burnell
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
C. T. Griffin
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
S. A. Joyce
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
M. J. Nugent
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
M. J. Downes
Affiliation:
Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland

Extract

Entomopathogenic nematodes of the genus Heterorhabditis are morphologically conservative, consequently the majority of isolates remain unassigned at the species level. When a Heterorhabditis infective juvenile infects an insect host, it develops into a protandrous hermaphrodite female. These first-generation females give rise to a second generation which contains both males and females. Because of this complex life-cycle and also because of uncertainty as to whether second-generation females are amphimictic, cross-breeding studies to facilitate species determination have not been carried out previously. We demonstrate here that second-generation Heterorhabditis females are amphimictic. Because of this finding, we have been able to develop a successful cross-breeding technique for the purposes of species determination in Heterorhabditis. Interstrain crosses using second-generation males and females from the appropriate strains have been successfully set up in Xenorhabdus luminescens-treated G. mellonella cadavers and also on agar plates. Using the techniques described here we confirm that H. bacteriophora (Brecon strain), H. megidis and H. zealandica are distinct biological species, we note that the H. bacteriophora group contains at least 2 species and we provide evidence for the existence of a new Irish species of Heterorhabditis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology 121, 303–9.Google Scholar
Akhurst, R. J. (1986). Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. International Journal of Systematic Bacteriology 33, 3845.CrossRefGoogle Scholar
Akhurst, R. J. (1987). Use of starch gel electrophoresis in the taxonomy of the genus Heterorhabditis (Nematoda: Heterorhabditidae). Nematologica 33, 19.CrossRefGoogle Scholar
Akhurst, R. J. & Bedding, R. A. (1978). A simple cross-breeding technique to facilitate species determination in the genus Neoaplectana. Nematologica 24, 328–30.Google Scholar
Akhurst, R. J. & Bedding, R. A. (1986). Natural occurrence of insect pathogenic nematodes (Steinernematidae and Heterorhabditidae) in soil in Australia. Journal of the Australian Entomology Society 25, 241–4.CrossRefGoogle Scholar
Akhurst, R. J. & Brooks, W. M. (1984). The distribution of entomophilic nematodes (Heterorhabditidae and Steinernematidae) in North Carolina. Journal of Invertebrate Pathology 44, 140–5.CrossRefGoogle Scholar
Arteaga-Hernandez, E. M. & Mracek, Z. (1984). Heterorhabditis heliothidis, a parasite of insect pests in Cuba. Folia Parasitologica (Praha) 31, 1117.Google Scholar
Avise, J. C. & Aquadro, C. F. (1982). A comparative summary of genetic distances in the vertebrates. Patterns and correlations. Evolutionary Biology 15, 151–85.CrossRefGoogle Scholar
Blackshaw, R. P. (1988). A survey of insect parasitic nematodes in Northern Ireland. Annals of Applied Biology 113, 561–5.CrossRefGoogle Scholar
Chitwood, B. G. & Chitwood, M. B. (1937). An Introduction to Nematology. Baltimore: Monumental Printing Company.Google Scholar
Curran, J. & Webster, J. M. (1989). Genotypic analysis of Heterorhabditis isolates from North Carolina. Journal of Nematology 21, 140–5.Google ScholarPubMed
Deseo, K. V., Fantonni, P. & Lazzari, G. L. (1988). Presenza di nematodi entomopathogeni (Steinernema spp., Heterorhabditis spp.) nei terreni agricole in Italia. Atti Giornate Fitopathologiche 2, 269–80.Google Scholar
Downes, M. J. & Griffin, C. T. (1991). Recovery of Heterorhabditid nematodes from Irish and Scottish soils.Proceedings of the Third European Meeting of the IOBC Working Group on Insect Pathogens and Insect Parasitic Nematodes,Wageningen, The Netherlands,24–27 February, 1991 (ed. Smits, P.H.), pp. 216218. Wageningen: International Union of Biological Sciences.Google Scholar
Dunphy, G. B. & Webster, J. M. (1989). The monoxenic culture of Neoaplectana carpocapsae DD136 and Heterorhabditis heliothidis. Revue de Nématologie 12, 113–23.Google Scholar
Gaugler, R. & Kaya, H. K. (1990). Entomopathogenic Nematodes in Biological Control. Boca Raton: CRC Press.Google Scholar
Glaser, I., Gaugler, R. & Segal, D. (1991). Genetics of the entomopathogenic nematode Heterorhabditis bacteriophora (Strain HP88): the diversity of beneficial traits. Journal of Nematology 23, 324–33.Google Scholar
Griffin, C. T., Moore, J. F. & Downes, M. J. (1991). Occurrence of insect parasitic nematodes (Steinernematidae, Heterorhabditidae) in the Republic of Ireland. Nematologica 37, 92100.Google Scholar
Hara, A. H., Gaugler, R., Kaya, H. K. & Lebeck, L. M. (1991). Natural populations of entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) from the Hawaiian Islands. Environmental Entomology 20, 211–16.CrossRefGoogle Scholar
Hominick, W. M. & Briscoe, B. R. (1990). Occurrence of entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) in British soils. Parasitology 100, 295302.CrossRefGoogle Scholar
Khan, A., Brooks, W. M. & Hirschmann, H. (1976). Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zea (Noctuidae, Lepidoptera) and other insects. Journal of Nematology 8, 159–68.Google Scholar
Kimble, J. E. & White, J. G. (1981). On the control of germ cell development in Caenorhabditis elegans. Developmental Biology 81, 208–19.CrossRefGoogle ScholarPubMed
King, M.-C. & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science 188, 107–88.CrossRefGoogle ScholarPubMed
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Belknap Press.CrossRefGoogle Scholar
Poinar, G. O. (1967). Description and taxonomic position of the DD136 nematode (Steinernematidae, Rhabditoidea) and its relationship to Neoaplectana carpocapsae Weiser. Proceedings of the Helminthological Society of Washington 34, 199209.Google Scholar
Poinar, G. O. (1975). Description and biology of a new insect parasitic rhabditoid Heterorhabditis bacteriophora n. gen., n. sp. (Rhabditida; Heterorhabditidae n. fam.). Nematologica 21, 463–70.CrossRefGoogle Scholar
Poinar, G. O. (1979). Nematodes for Biological Control of Insects. Boca Raton: CRC Press.Google Scholar
Poinar, G. O. (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H. K.) pp. 2364. Boca Raton: CRC Press.Google Scholar
Poinar, G. O. & Georgis, R. (1990). Characterization and field application of Heterorhabditis bacteriophora strain HP88 (Heterorhabditidae: Rhabditida). Revue de Nématologie 13, 387–93.Google Scholar
Poinar, G. O., Jackson, T. & Klein, M. (1987). Heterorhabditis megidis sp. n. (Heterorhabditidae: Rhabditida), parasitic in the Japanese beetle Popillia japonica (Scarabaeidae: Coleoptera), in Ohio. Proceedings of the Helminthological Society of Washington 54, 53–9.Google Scholar
Singh, R. S. (1990). Patterns of species divergence and genetic theories of speciation. In Population Biology, Ecological and Evolutionary Viewpoints (ed. Wohrmann, K. & Jain, S. K.), pp. 231–65. Berlin: Springer-Verlag.Google Scholar
Smits, P. H., Groenen, J. T. M. & De Raay, G. (1991). Characterisation of Heterorhabditis isolates using DNA restriction fragment length polymorphism. Revue de Nématologie 14, 445–53.Google Scholar
Woodring, J. L. & Kaya, H. K. (1988). Steinernematid and Heterorhabditid nematodes: a handbook of biology and techniques. Southern Cooperative Series Bulletin No. 331, Arkansas Agricultural Experiment Station, Fayetteville, Arkansas.Google Scholar
Wouts, W. M. (1979). The biology and life cycle of a New Zealand population of Heterorhabditis heliothidis (Heterorhabditidae). Nematologica 25, 191202.CrossRefGoogle Scholar
Wouts, W. M., Mracek, Z., Gerdin, S. & Bedding, R. A. (1982). Neoaplectana Steiner, 1929 a junior synonym of Steinernema Travassos, 1927 (Nematoda, Rhabditida). Systematic Parasitology 4, 147–54.CrossRefGoogle Scholar
Wright, P. J. (1990). Morphological characterisation of the entomogenous nematodes Steinernema spp. and Heterorhabditis spp. (Nematoda: Rhabditida). New Zealand Journal of Zoology 17, 577–85.CrossRefGoogle Scholar