Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T06:34:13.413Z Has data issue: false hasContentIssue false

Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum

Published online by Cambridge University Press:  07 January 2016

ANJA SCHOLZEN*
Affiliation:
Department of Medical Microbiology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
ROBERT W. SAUERWEIN*
Affiliation:
Department of Medical Microbiology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
*
*Corresponding authors. Department of Medical Microbiology, Radboud university medical center, Route 268, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Tel: +31 24 3614306. Fax: +31 24 3614666. E-mail: anja.scholzen@radboudumc.nl; robert.sauerwein@radboudumc.nl
*Corresponding authors. Department of Medical Microbiology, Radboud university medical center, Route 268, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Tel: +31 24 3614306. Fax: +31 24 3614666. E-mail: anja.scholzen@radboudumc.nl; robert.sauerwein@radboudumc.nl

Summary

Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arevalo-Herrera, M., Forero-Pena, D. A., Rubiano, K., Gomez-Hincapie, J., Martinez, N. L., Lopez-Perez, M., Castellanos, A., Cespedes, N., Palacios, R., Onate, J. M. and Herrera, S. (2014). Plasmodium vivax sporozoite challenge in malaria-naive and semi-immune Colombian volunteers. PLoS ONE 9, e99754.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, K., Eleme, K., McQueen, K. L., Cheng, N. W., Parham, P., Davis, D. M. and Riley, E. M. (2003). Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. Journal of Immunology 171, 53965405.CrossRefGoogle ScholarPubMed
Artis, D. and Spits, H. (2015). The biology of innate lymphoid cells. Nature 517, 293301.CrossRefGoogle ScholarPubMed
Badr, G., Borhis, G., Lefevre, E. A., Chaoul, N., Deshayes, F., Dessirier, V., Lapree, G., Tsapis, A. and Richard, Y. (2008). BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood 111, 27442754.CrossRefGoogle Scholar
Belderok, S. M., van den Hoek, A., Roeffen, W., Sauerwein, R. and Sonder, G. J. (2013). Adherence to chemoprophylaxis and Plasmodium falciparum anti-circumsporozoite seroconversion in a prospective cohort study of Dutch short-term travelers. PLoS ONE 8, e56863.CrossRefGoogle Scholar
Bertho, N., Blancheteau, V. M., Setterblad, N., Laupeze, B., Lord, J. M., Drenou, B., Amiot, L., Charron, D. J., Fauchet, R. and Mooney, N. (2002). MHC class II-mediated apoptosis of mature dendritic cells proceeds by activation of the protein kinase C-delta isoenzyme. International Immunology 14, 935942.CrossRefGoogle ScholarPubMed
Bijker, E. M., Bastiaens, G. J., Teirlinck, A. C., van Gemert, G. J., Graumans, W., van de Vegte-Bolmer, M., Siebelink-Stoter, R., Arens, T., Teelen, K., Nahrendorf, W., Remarque, E. J., Roeffen, W., Jansens, A., Zimmerman, D., Vos, M., van Schaijk, B. C., Wiersma, J., van der Ven, A. J., de Mast, Q., van Lieshout, L., Verweij, J. J., Hermsen, C. C., Scholzen, A. and Sauerwein, R. W. (2013). Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proceedings of the National Academy of Sciences of the United States of America 110, 78627867.CrossRefGoogle ScholarPubMed
Biswas, S., Choudhary, P., Elias, S. C., Miura, K., Milne, K. H., de Cassan, S. C., Collins, K. A., Halstead, F. D., Bliss, C. M., Ewer, K. J., Osier, F. H., Hodgson, S. H., Duncan, C. J., O'Hara, G. A., Long, C. A., Hill, A. V. and Draper, S. J. (2014). Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS ONE 9, e107903.CrossRefGoogle ScholarPubMed
Boswell, K. L., Paris, R., Boritz, E., Ambrozak, D., Yamamoto, T., Darko, S., Wloka, K., Wheatley, A., Narpala, S., McDermott, A., Roederer, M., Haubrich, R., Connors, M., Ake, J., Douek, D. C., Kim, J., Petrovas, C. and Koup, R. A. (2014). Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. PLoS Pathogens 10, e1003853.CrossRefGoogle ScholarPubMed
Brinkman, C. C., Peske, J. D. and Engelhard, V. H. (2013). Peripheral tissue homing receptor control of naive, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Frontiers in Immunology 4, 241.CrossRefGoogle ScholarPubMed
Chulay, J. D., Schneider, I., Cosgriff, T. M., Hoffman, S. L., Ballou, W. R., Quakyi, I. A., Carter, R., Trosper, J. H. and Hockmeyer, W. T. (1986). Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 35, 6668.CrossRefGoogle ScholarPubMed
Church, L. W., Le, T. P., Bryan, J. P., Gordon, D. M., Edelman, R., Fries, L., Davis, J. R., Herrington, D. A., Clyde, D. F., Shmuklarsky, M. J., Schneider, I., McGovern, T. W., Chulay, J. D., Ballou, W. R. and Hoffman, S. L. (1997). Clinical manifestations of Plasmodium falciparum malaria experimentally induced by mosquito challenge. Journal of Infectious Diseases 175, 915920.CrossRefGoogle ScholarPubMed
Cobelens, F. G., Verhave, J. P., Leentvaar-Kuijpers, A. and Kager, P. A. (1998). Testing for anti-circumsporozoite and anti-blood-stage antibodies for epidemiologic assessment of Plasmodium falciparum infection in travelers. American Journal of Tropical Medicine and Hygiene 58, 7580.CrossRefGoogle ScholarPubMed
Collins, W. E. and Jeffery, G. M. (1999 a). A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. American Journal of Tropical Medicine and Hygiene 61, 2035.CrossRefGoogle ScholarPubMed
Collins, W. E. and Jeffery, G. M. (1999 b). A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. American Journal of Tropical Medicine and Hygiene 61, 3643.CrossRefGoogle ScholarPubMed
Collins, W. E. and Jeffery, G. M. (1999 c). A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. American Journal of Tropical Medicine and Hygiene 61, 419.CrossRefGoogle ScholarPubMed
Collins, W. E., Jeffery, G. M. and Roberts, J. M. (2004). A retrospective examination of reinfection of humans with Plasmodium vivax. American Journal of Tropical Medicine and Hygiene 70, 642644.CrossRefGoogle ScholarPubMed
Conroy, A., Serghides, L., Finney, C., Owino, S. O., Kumar, S., Gowda, D. C., Liles, W. C., Moore, J. M. and Kain, K. C. (2009). C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS ONE 4, e4953.CrossRefGoogle ScholarPubMed
de Mast, Q., Groot, E., Lenting, P. J., de Groot, P. G., McCall, M., Sauerwein, R. W., Fijnheer, R. and van der Ven, A. (2007). Thrombocytopenia and release of activated von Willebrand factor during early Plasmodium falciparum malaria. Journal of Infectious Diseases 196, 622628.CrossRefGoogle ScholarPubMed
De Mast, Q., Sweep, F. C., McCall, M., Geurts-Moespot, A., Hermsen, C., Calandra, T., Netea, M. G., Sauerwein, R. W. and van der Ven, A. J. (2008). A decrease of plasma macrophage migration inhibitory factor concentration is associated with lower numbers of circulating lymphocytes in experimental Plasmodium falciparum malaria. Parasite Immunology 30, 133138.CrossRefGoogle ScholarPubMed
de Mast, Q., Nadjm, B., Reyburn, H., Kemna, E. H., Amos, B., Laarakkers, C. M., Silalye, S., Verhoef, H., Sauerwein, R. W., Swinkels, D. W. and van der Ven, A. J. (2009 a). Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection. Journal of Infectious Diseases 199, 253262.CrossRefGoogle ScholarPubMed
de Mast, Q., van Dongen-Lases, E. C., Swinkels, D. W., Nieman, A. E., Roestenberg, M., Druilhe, P., Arens, T. A., Luty, A. J., Hermsen, C. C., Sauerwein, R. W. and van der Ven, A. J. (2009 b). Mild increases in serum hepcidin and interleukin-6 concentrations impair iron incorporation in haemoglobin during an experimental human malaria infection. British Journal of Haematology 145, 657664.CrossRefGoogle ScholarPubMed
Dobel, T., Kunze, A., Babatz, J., Trankner, K., Ludwig, A., Schmitz, M., Enk, A. and Schakel, K. (2013). FcgammaRIII (CD16) equips immature 6-sulfo LacNAc-expressing dendritic cells (slanDCs) with a unique capacity to handle IgG-complexed antigens. Blood 121, 36093618.CrossRefGoogle ScholarPubMed
D'Ombrain, M. C., Hansen, D. S., Simpson, K. M. and Schofield, L. (2007). gammadelta-T cells expressing NK receptors predominate over NK cells and conventional T cells in the innate IFN-gamma response to Plasmodium falciparum malaria. European Journal of Immunology 37, 18641873.CrossRefGoogle ScholarPubMed
Donati, D., Zhang, L. P., Chene, A., Chen, Q., Flick, K., Nystrom, M., Wahlgren, M. and Bejarano, M. T. (2004). Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infection and Immunity 72, 54125418.CrossRefGoogle ScholarPubMed
Druilhe, P., Hagan, P. and Rook, G. A. (2002). The importance of models of infection in the study of disease resistance. Trends in Microbiology 10, S38S46.CrossRefGoogle Scholar
Duncan, C. J. and Draper, S. J. (2012). Controlled human blood stage malaria infection: current status and potential applications. American Journal of Tropical Medicine and Hygiene 86, 561565.CrossRefGoogle ScholarPubMed
Elias, S. C., Collins, K. A., Halstead, F. D., Choudhary, P., Bliss, C. M., Ewer, K. J., Sheehy, S. H., Duncan, C. J., Biswas, S., Hill, A. V. and Draper, S. J. (2013). Assessment of immune interference, antagonism, and diversion following human immunization with biallelic blood-stage malaria viral-vectored vaccines and controlled malaria infection. Journal of Immunology 190, 11351147.CrossRefGoogle ScholarPubMed
Elias, S. C., Choudhary, P., de Cassan, S. C., Biswas, S., Collins, K. A., Halstead, F. D., Bliss, C. M., Ewer, K. J., Hodgson, S. H., Duncan, C. J., Hill, A. V. and Draper, S. J. (2014). Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection. Immunology 141, 628644.CrossRefGoogle ScholarPubMed
Elliott, S. R., Payne, P. D., Duffy, M. F., Byrne, T. J., Tham, W. H., Rogerson, S. J., Brown, G. V. and Eisen, D. P. (2007). Antibody recognition of heterologous variant surface antigens after a single Plasmodium falciparum infection in previously naive adults. American Journal of Tropical Medicine and Hygiene 76, 860864.CrossRefGoogle ScholarPubMed
Engwerda, C. R., Minigo, G., Amante, F. H. and McCarthy, J. S. (2012). Experimentally induced blood stage malaria infection as a tool for clinical research. Trends in Parasitology 28, 515521.CrossRefGoogle ScholarPubMed
Epstein, J. E., Rao, S., Williams, F., Freilich, D., Luke, T., Sedegah, M., de la Vega, P., Sacci, J., Richie, T. L. and Hoffman, S. L. (2007). Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum-infected mosquitoes: an update. Journal of Infectious Diseases 196, 145154.CrossRefGoogle ScholarPubMed
Erdman, L. K., Finney, C. A., Liles, W. C. and Kain, K. C. (2008). Inflammatory pathways in malaria infection: TLRs share the stage with other components of innate immunity. Molecular and Biochemical Parasitology 162, 105111.CrossRefGoogle ScholarPubMed
Feachem, R. G., Phillips, A. A., Hwang, J., Cotter, C., Wielgosz, B., Greenwood, B. M., Sabot, O., Rodriguez, M. H., Abeyasinghe, R. R., Ghebreyesus, T. A. and Snow, R. W. (2010). Shrinking the malaria map: progress and prospects. Lancet 376, 15661578.CrossRefGoogle ScholarPubMed
Frevert, U., Nacer, A., Cabrera, M., Movila, A. and Leberl, M. (2014). Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitology International 63, 171186.CrossRefGoogle ScholarPubMed
Fuertes Marraco, S. A., Scott, C. L., Bouillet, P., Ives, A., Masina, S., Vremec, D., Jansen, E. S., O'Reilly, L. A., Schneider, P., Fasel, N., Shortman, K., Strasser, A. and Acha-Orbea, H. (2011). Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS ONE 6, e20189.CrossRefGoogle ScholarPubMed
Gun, S. Y., Claser, C., Tan, K. S. and Renia, L. (2014). Interferons and interferon regulatory factors in malaria. Mediators of Inflammation 2014, 243713.CrossRefGoogle ScholarPubMed
Harpaz, R., Edelman, R., Wasserman, S. S., Levine, M. M., Davis, J. R. and Sztein, M. B. (1992). Serum cytokine profiles in experimental human malaria. Relationship to protection and disease course after challenge. Journal of Clinical Investigation 90, 515523.CrossRefGoogle ScholarPubMed
Hermsen, C. C., Konijnenberg, Y., Mulder, L., Loe, C., van Deuren, M., van der Meer, J. W., van Mierlo, G. J., Eling, W. M., Hack, C. E. and Sauerwein, R. W. (2003). Circulating concentrations of soluble granzyme A and B increase during natural and experimental Plasmodium falciparum infections. Clinical and Experimental Immunology 132, 467472.CrossRefGoogle Scholar
Herrera, S., Fernandez, O., Manzano, M. R., Murrain, B., Vergara, J., Blanco, P., Palacios, R., Velez, J. D., Epstein, J. E., Chen-Mok, M., Reed, Z. H. and Arevalo-Herrera, M. (2009). Successful sporozoite challenge model in human volunteers with Plasmodium vivax strain derived from human donors. American Journal of Tropical Medicine and Hygiene 81, 740746.CrossRefGoogle ScholarPubMed
Herrera, S., Solarte, Y., Jordan-Villegas, A., Echavarria, J. F., Rocha, L., Palacios, R., Ramirez, O., Velez, J. D., Epstein, J. E., Richie, T. L. and Arevalo-Herrera, M. (2011). Consistent safety and infectivity in sporozoite challenge model of Plasmodium vivax in malaria-naive human volunteers. American Journal of Tropical Medicine and Hygiene 84, 411.CrossRefGoogle ScholarPubMed
Herrington, D. A., Clyde, D. F., Murphy, J. R., Baqar, S., Levine, M. M., do Rosario, V. and Hollingdale, M. R. (1988). A model for Plasmodium falciparum sporozoite challenge and very early therapy of parasitaemia for efficacy studies of sporozoite vaccines. Tropical and Geographical Medicine 40, 124127.Google Scholar
Hofer, T., Krichevsky, O. and Altan-Bonnet, G. (2012). Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Frontiers in Immunology 3, 268.CrossRefGoogle ScholarPubMed
Horowitz, A., Newman, K. C., Evans, J. H., Korbel, D. S., Davis, D. M. and Riley, E. M. (2010). Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. Journal of Immunology 184, 60436052.CrossRefGoogle ScholarPubMed
Jelinek, T., Nothdurft, H. D. and Loscher, T. (1995). Evaluation of circumsporozoite antibody testing as a sero-epidemiological tool for the detection of Plasmodium falciparum infection in non-immune travelers. Tropical Medicine and Parasitology 46, 154157.Google ScholarPubMed
Jelinek, T., Bluml, A., Loscher, T. and Nothdurft, H. D. (1998). Assessing the incidence of infection with Plasmodium falciparum among international travelers. American Journal of Tropical Medicine and Hygiene 59, 3537.CrossRefGoogle ScholarPubMed
Knappik, M., Peyerl-Hoffmann, G. and Jelinek, T. (2002). Plasmodium falciparum: use of a NANP19 antibody-test for the detection of infection in non-immune travellers. Tropical Medicine and International Health 7, 652656.CrossRefGoogle ScholarPubMed
Korbel, D. S., Newman, K. C., Almeida, C. R., Davis, D. M. and Riley, E. M. (2005). Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. Journal of Immunology 175, 74667473.CrossRefGoogle ScholarPubMed
Kumsiri, R., Potup, P., Chotivanich, K., Petmitr, S., Kalambaheti, T. and Maneerat, Y. (2010). Blood stage Plasmodium falciparum antigens induce T cell independent immunoglobulin production via B cell activation factor of the TNF family (BAFF) pathway. Acta Tropica 116, 217226.CrossRefGoogle Scholar
Kushwah, R. and Hu, J. (2010). Dendritic cell apoptosis: regulation of tolerance versus immunity. Journal of Immunology 185, 795802.CrossRefGoogle ScholarPubMed
Langhorne, J., Ndungu, F. M., Sponaas, A. M. and Marsh, K. (2008). Immunity to malaria: more questions than answers. Nature Immunology 9, 725732.CrossRefGoogle ScholarPubMed
Lavstsen, T., Magistrado, P., Hermsen, C. C., Salanti, A., Jensen, A. T., Sauerwein, R., Hviid, L., Theander, T. G. and Staalsoe, T. (2005). Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans. Malaria Journal 4, 21.CrossRefGoogle ScholarPubMed
Liehl, P., Zuzarte-Luis, V., Chan, J., Zillinger, T., Baptista, F., Carapau, D., Konert, M., Hanson, K. K., Carret, C., Lassnig, C., Muller, M., Kalinke, U., Saeed, M., Chora, A. F., Golenbock, D. T., Strobl, B., Prudencio, M., Coelho, L. P., Kappe, S. H., Superti-Furga, G., Pichlmair, A., Vigario, A. M., Rice, C. M., Fitzgerald, K. A., Barchet, W. and Mota, M. M. (2014). Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine 20, 4753.CrossRefGoogle ScholarPubMed
Liu, Z. and Roche, P. A. (2015). Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Frontiers in Physiology 6, 1.CrossRefGoogle ScholarPubMed
Locci, M., Havenar-Daughton, C., Landais, E., Wu, J., Kroenke, M. A., Arlehamn, C. L., Su, L. F., Cubas, R., Davis, M. M., Sette, A., Haddad, E. K., International AIDS Vaccine Initiative Protocol C Principal Investigators, Poignard, P. and Crotty, S. (2013). Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758769.CrossRefGoogle ScholarPubMed
Lovegrove, F. E., Pena-Castillo, L., Mohammad, N., Liles, W. C., Hughes, T. R. and Kain, K. C. (2006). Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7, 295.CrossRefGoogle ScholarPubMed
Martini, F., Paglia, M. G., Montesano, C., Enders, P. J., Gentile, M., Pauza, C. D., Gioia, C., Colizzi, V., Narciso, P., Pucillo, L. P. and Poccia, F. (2003). V gamma 9 V delta 2T-cell anergy and complementarity-determining region 3-specific depletion during paroxysm of nonendemic malaria infection. Infection and Immunity 71, 29452949.CrossRefGoogle ScholarPubMed
McCall, M. B., Netea, M. G., Hermsen, C. C., Jansen, T., Jacobs, L., Golenbock, D., van der Ven, A. J. and Sauerwein, R. W. (2007). Plasmodium falciparum infection causes proinflammatory priming of human TLR responses. Journal of Immunology 179, 162171.CrossRefGoogle ScholarPubMed
McCall, M. B., Roestenberg, M., Ploemen, I., Teirlinck, A., Hopman, J., de Mast, Q., Dolo, A., Doumbo, O. K., Luty, A., van der Ven, A. J., Hermsen, C. C. and Sauerwein, R. W. (2010). Memory-like IFN-gamma response by NK cells following malaria infection reveals the crucial role of T cells in NK cell activation by P. falciparum. European Journal of Immunology 40, 34723477.CrossRefGoogle ScholarPubMed
McCarthy, J. S., Sekuloski, S., Griffin, P. M., Elliott, S., Douglas, N., Peatey, C., Rockett, R., O'Rourke, P., Marquart, L., Hermsen, C., Duparc, S., Mohrle, J., Trenholme, K. R. and Humberstone, A. J. (2011). A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE 6, e21914.CrossRefGoogle ScholarPubMed
McHeyzer-Williams, M., Okitsu, S., Wang, N. and McHeyzer-Williams, L. (2012). Molecular programming of B cell memory. Nature Reviews Immunology 12, 2434.CrossRefGoogle Scholar
Mestas, J. and Hughes, C. C. (2004). Of mice and not men: differences between mouse and human immunology. Journal of Immunology 172, 27312738.CrossRefGoogle Scholar
Miller, J. L., Sack, B. K., Baldwin, M., Vaughan, A. M. and Kappe, S. H. (2014). Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Reports 7, 436447.CrossRefGoogle ScholarPubMed
Mitchell, A. J., Roediger, B. and Weninger, W. (2014). Monocyte homeostasis and the plasticity of inflammatory monocytes. Cellular Immunology 291, 2231.CrossRefGoogle ScholarPubMed
Molineaux, L., Trauble, M., Collins, W. E., Jeffery, G. M. and Dietz, K. (2002). Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 205209.CrossRefGoogle ScholarPubMed
Molle, I., Petersen, E. and Buhl, M. R. (1999). Retrospective evaluation of exposure to P. falciparum using antibodies to circumsporozoite protein and to cultured P. falciparum antigens. Scandinavian Journal of Infectious Diseases 31, 6971.Google Scholar
Nahrendorf, W., Scholzen, A., Bijker, E. M., Teirlinck, A. C., Bastiaens, G. J., Schats, R., Hermsen, C. C., Visser, L. G., Langhorne, J. and Sauerwein, R. W. (2014). Memory B-cell and antibody responses induced by Plasmodium falciparum sporozoite immunization. Journal of Infectious Diseases 210, 19811990.CrossRefGoogle ScholarPubMed
Nduati, E. W., Ng, D. H., Ndungu, F. M., Gardner, P., Urban, B. C. and Langhorne, J. (2010). Distinct kinetics of memory B-cell and plasma-cell responses in peripheral blood following a blood-stage Plasmodium chabaudi infection in mice. PLoS ONE 5, e15007.CrossRefGoogle ScholarPubMed
Nganou-Makamdop, K., van Gemert, G. J., Arens, T., Hermsen, C. C. and Sauerwein, R. W. (2012). Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells. PLoS ONE 7, e36508.CrossRefGoogle Scholar
Nothdurft, H. D., Jelinek, T., Bluml, A., von Sonnenburg, F. and Loscher, T. (1999). Seroconversion to circumsporozoite antigen of Plasmodium falciparum demonstrates a high risk of malaria transmission in travelers to East Africa. Clinical Infectious Diseases 28, 641642.CrossRefGoogle ScholarPubMed
Obiero, J. M., Shekalaghe, S., Hermsen, C. C., Mpina, M., Bijker, E. M., Roestenberg, M., Teelen, K., Billingsley, P. F., Sim, B. K., James, E. R., Daubenberger, C. A., Hoffman, S. L., Abdulla, S., Sauerwein, R. W. and Scholzen, A. (2015). Impact of malaria pre-exposure on anti-parasite cellular and humoral immune responses after controlled human malaria infection. Infection and Immunity 83, 21852196.CrossRefGoogle Scholar
Ockenhouse, C. F., Hu, W. C., Kester, K. E., Cummings, J. F., Stewart, A., Heppner, D. G., Jedlicka, A. E., Scott, A. L., Wolfe, N. D., Vahey, M. and Burke, D. S. (2006). Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infection and Immunity 74, 55615573.CrossRefGoogle ScholarPubMed
Orlov, M., Vaida, F., Finney, O. C., Smith, D. M., Talley, A. K., Wang, R., Kappe, S. H., Deng, Q., Schooley, R. T. and Duffy, P. E. (2012). P. falciparum enhances HIV replication in an experimental malaria challenge system. PLoS ONE 7, e39000.CrossRefGoogle Scholar
Peters, J., Fowler, E., Gatton, M., Chen, N., Saul, A. and Cheng, Q. (2002). High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proceedings of the National Academy of Sciences of the United States of America 99, 1068910694.CrossRefGoogle ScholarPubMed
Pichyangkul, S., Yongvanitchit, K., Kum-arb, U., Hemmi, H., Akira, S., Krieg, A. M., Heppner, D. G., Stewart, V. A., Hasegawa, H., Looareesuwan, S., Shanks, G. D. and Miller, R. S. (2004). Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. Journal of Immunology 172, 49264933.CrossRefGoogle ScholarPubMed
Portugal, S., Pierce, S. K. and Crompton, P. D. (2013). Young lives lost as B cells falter: what we are learning about antibody responses in malaria. Journal of Immunology 190, 30393046.CrossRefGoogle Scholar
Riley, E. M. and Stewart, V. A. (2013). Immune mechanisms in malaria: new insights in vaccine development. Nature Medicine 19, 168178.CrossRefGoogle ScholarPubMed
Roestenberg, M., McCall, M., Mollnes, T. E., van Deuren, M., Sprong, T., Klasen, I., Hermsen, C. C., Sauerwein, R. W. and van der Ven, A. (2007). Complement activation in experimental human malaria infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 643649.CrossRefGoogle ScholarPubMed
Roestenberg, M., O'Hara, G. A., Duncan, C. J., Epstein, J. E., Edwards, N. J., Scholzen, A., van der Ven, A. J., Hermsen, C. C., Hill, A. V. and Sauerwein, R. W. (2012). Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS ONE 7, e38434.CrossRefGoogle ScholarPubMed
Roestenberg, M., Bijker, E. M., Sim, B. K., Billingsley, P. F., James, E. R., Bastiaens, G. J., Teirlinck, A. C., Scholzen, A., Teelen, K., Arens, T., van der Ven, A. J., Gunasekera, A., Chakravarty, S., Velmurugan, S., Hermsen, C. C., Sauerwein, R. W. and Hoffman, S. L. (2013). Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. American Journal of Tropical Medicine and Hygiene 88, 513.CrossRefGoogle ScholarPubMed
Rzepczyk, C. M., Stamatiou, S., Anderson, K., Stowers, A., Cheng, Q., Saul, A., Allworth, A., McCormack, J., Whitby, M., Olive, C. and Lawrence, G. (1996). Experimental human Plasmodium falciparum infections: longitudinal analysis of lymphocyte responses with particular reference to gamma delta T cells. Scandinavian Journal of Immunology 43, 219227.CrossRefGoogle ScholarPubMed
Sallusto, F., Geginat, J. and Lanzavecchia, A. (2004). Central memory and effector memory T cell subsets: function, generation, and maintenance. Annual Review of Immunology 22, 745763.CrossRefGoogle ScholarPubMed
Sauerwein, R. W., Roestenberg, M. and Moorthy, V. S. (2011). Experimental human challenge infections can accelerate clinical malaria vaccine development. Nature Reviews Immunology 11, 5764.CrossRefGoogle ScholarPubMed
Schenkel, J. M. and Masopust, D. (2014). Tissue-resident memory T cells. Immunity 41, 886897.CrossRefGoogle ScholarPubMed
Scholzen, A. and Sauerwein, R. W. (2013). How malaria modulates memory: activation and dysregulation of B cells in Plasmodium infection. Trends in Parasitology 29, 252262.CrossRefGoogle ScholarPubMed
Scholzen, A., Mittag, D., Rogerson, S. J., Cooke, B. M. and Plebanski, M. (2009). Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathogens 5, e1000543.CrossRefGoogle Scholar
Scholzen, A., Minigo, G. and Plebanski, M. (2010). Heroes or villains? T regulatory cells in malaria infection. Trends in Parasitology 26, 1625.CrossRefGoogle ScholarPubMed
Scholzen, A., Teirlinck, A. C., Bijker, E. M., Roestenberg, M., Hermsen, C. C., Hoffman, S. L. and Sauerwein, R. W. (2014). BAFF and BAFF receptor levels correlate with B cell subset activation and redistribution in controlled human malaria infection. Journal of Immunology 192, 37193729.CrossRefGoogle ScholarPubMed
Seder, R. A., Chang, L. J., Enama, M. E., Zephir, K. L., Sarwar, U. N., Gordon, I. J., Holman, L. A., James, E. R., Billingsley, P. F., Gunasekera, A., Richman, A., Chakravarty, S., Manoj, A., Velmurugan, S., Li, M., Ruben, A. J., Li, T., Eappen, A. G., Stafford, R. E., Plummer, S. H., Hendel, C. S., Novik, L., Costner, P. J., Mendoza, F. H., Saunders, J. G., Nason, M. C., Richardson, J. H., Murphy, J., Davidson, S. A., Richie, T. L., et al. (2013). Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 13591365.CrossRefGoogle ScholarPubMed
Seed, C. R., Hamzah, J. and Davis, T. M. (2006). Evidence for undetected malaria infection in non-immune Australian travellers not taking chemoprophylaxis. Acta Tropica 99, 6266.CrossRefGoogle Scholar
Sheehy, S. H., Spencer, A. J., Douglas, A. D., Sim, B. K., Longley, R. J., Edwards, N. J., Poulton, I. D., Kimani, D., Williams, A. R., Anagnostou, N. A., Roberts, R., Kerridge, S., Voysey, M., James, E. R., Billingsley, P. F., Gunasekera, A., Lawrie, A. M., Hoffman, S. L. and Hill, A. V. (2013). Optimising controlled human malaria infection studies using cryopreserved parasites administered by needle and syringe. PLoS ONE 8, e65960.CrossRefGoogle ScholarPubMed
Snounou, G. and Perignon, J. L. (2013). Malariotherapy – insanity at the service of malariology. Advances in Parasitology 81, 223255.CrossRefGoogle ScholarPubMed
Stephens, R., Culleton, R. L. and Lamb, T. J. (2012). The contribution of Plasmodium chabaudi to our understanding of malaria. Trends in Parasitology 28, 7382.CrossRefGoogle ScholarPubMed
Struik, S. S. and Riley, E. M. (2004). Does malaria suffer from lack of memory? Immunological Reviews 201, 268290.CrossRefGoogle ScholarPubMed
Talley, A. K., Healy, S. A., Finney, O. C., Murphy, S. C., Kublin, J., Salas, C. J., Lundebjerg, S., Gilbert, P., Van Voorhis, W. C., Whisler, J., Wang, R., Ockenhouse, C. F., Heppner, D. G., Kappe, S. H. and Duffy, P. E. (2014). Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge. PLoS ONE 9, e109654.CrossRefGoogle Scholar
Teirlinck, A. C., McCall, M. B., Roestenberg, M., Scholzen, A., Woestenenk, R., de Mast, Q., van der Ven, A. J., Hermsen, C. C., Luty, A. J. and Sauerwein, R. W. (2011). Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathogens 7, e1002389.CrossRefGoogle ScholarPubMed
Teirlinck, A. C., Roestenberg, M., van de Vegte-Bolmer, M., Scholzen, A., Heinrichs, M. J., Siebelink-Stoter, R., Graumans, W., van Gemert, G. J., Teelen, K., Vos, M. W., Nganou-Makamdop, K., Borrmann, S., Rozier, Y. P., Erkens, M. A., Luty, A. J., Hermsen, C. C., Sim, B. K., van Lieshout, L., Hoffman, S. L., Visser, L. G. and Sauerwein, R. W. (2013). NF135.C10: a new Plasmodium falciparum clone for controlled human malaria infections. Journal of Infectious Diseases 207, 656660.CrossRefGoogle ScholarPubMed
Todryk, S. M., Walther, M., Bejon, P., Hutchings, C., Thompson, F. M., Urban, B. C., Porter, D. W. and Hill, A. V. (2009). Multiple functions of human T cells generated by experimental malaria challenge. European Journal of Immunology 39, 30423051.CrossRefGoogle Scholar
Turner, L., Wang, C. W., Lavstsen, T., Mwakalinga, S. B., Sauerwein, R. W., Hermsen, C. C. and Theander, T. G. (2011). Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naive volunteers. PLoS ONE 6, e29025.CrossRefGoogle ScholarPubMed
Verhage, D. F., Telgt, D. S., Bousema, J. T., Hermsen, C. C., van Gemert, G. J., van der Meer, J. W. and Sauerwein, R. W. (2005). Clinical outcome of experimental human malaria induced by Plasmodium falciparum-infected mosquitoes. Netherlands Journal of Medicine 63, 5258.Google ScholarPubMed
Walker, K. M., Okitsu, S., Porter, D. W., Duncan, C., Amacker, M., Pluschke, G., Cavanagh, D. R., Hill, A. V. and Todryk, S. M. (2014). Antibody and T cell responses associated with experimental human malaria infection or vaccination show limited relationships. Immunology 145, 7181.CrossRefGoogle Scholar
Walther, M., Tongren, J. E., Andrews, L., Korbel, D., King, E., Fletcher, H., Andersen, R. F., Bejon, P., Thompson, F., Dunachie, S. J., Edele, F., de Souza, J. B., Sinden, R. E., Gilbert, S. C., Riley, E. M. and Hill, A. V. (2005). Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23, 287296.CrossRefGoogle ScholarPubMed
Walther, M., Woodruff, J., Edele, F., Jeffries, D., Tongren, J. E., King, E., Andrews, L., Bejon, P., Gilbert, S. C., De Souza, J. B., Sinden, R., Hill, A. V. and Riley, E. M. (2006). Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. Journal of Immunology 177, 57365745.CrossRefGoogle ScholarPubMed
Wang, C. W., Hermsen, C. C., Sauerwein, R. W., Arnot, D. E., Theander, T. G. and Lavstsen, T. (2009). The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer. Parasitology International 58, 478480.CrossRefGoogle Scholar
WHO (2013). World Malaria Report 2013. World Health Organization, WHO Press.Google Scholar
Woodberry, T., Minigo, G., Piera, K. A., Amante, F. H., Pinzon-Charry, A., Good, M. F., Lopez, J. A., Engwerda, C. R., McCarthy, J. S. and Anstey, N. M. (2012). Low-level Plasmodium falciparum blood-stage infection causes dendritic cell apoptosis and dysfunction in healthy volunteers. Journal of Infectious Diseases 206, 333340.CrossRefGoogle ScholarPubMed
Wykes, M. N. and Good, M. F. (2008). What really happens to dendritic cells during malaria? Nature Reviews Microbiology 6, 864870.CrossRefGoogle ScholarPubMed
Yang, K. and Chi, H. (2012). mTOR and metabolic pathways in T cell quiescence and functional activation. Seminars in Immunology 24, 421428.CrossRefGoogle Scholar