Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T06:35:09.162Z Has data issue: false hasContentIssue false

In vitro and in vivo effects of progesterone on Trichinella spiralis newborn larvae

Published online by Cambridge University Press:  21 April 2005

G. G. NUÑEZ
Affiliation:
Humoral Immunity Studies Institute, CONICET, Chair of Immunology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
T. GENTILE
Affiliation:
Humoral Immunity Studies Institute, CONICET, Chair of Immunology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
S. N. COSTANTINO
Affiliation:
Humoral Immunity Studies Institute, CONICET, Chair of Immunology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
M. I. SARCHI
Affiliation:
Chair of Mathematics, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
S. M. VENTURIELLO
Affiliation:
Humoral Immunity Studies Institute, CONICET, Chair of Immunology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina

Abstract

We have previously demonstrated that during pregnancy there exists an increased parasiticide activity against Trichinella spiralis newborn larvae (NBL) in infected rats. In this work we analysed the contribution of peritoneal cells from non-infected pregnant rats to the mortality of the NBL in cytotoxicity assays, and evaluated the role of progesterone in this effector mechanism. Our findings suggest that progesterone can induce activation of effector peritoneal cells to destroy the NBL in a rapid and antibody-independent manner. The administration of progesterone to ovariectomized rats also led to a significant decrease in the parasite load of the animals, thus demonstrating that progesterone induces the increase of the parasiticide activity of the leukocytes involved in the mechanisms of NBL death.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AHMED, A. S., DAUPHINEE, M. J. & TALAL, N. ( 1985). Effects of short-term administration of sex hormones on normal and autoimmune mice. Journal of Immunology 134, 204210.Google Scholar
ARCK, P. C. ( 2001). Stress and pregnancy loss: role of immune mediators, hormones and neurotransmitters. American Journal of Reproductive Immunology 46, 117123.CrossRefGoogle Scholar
BEAGLEY, K. W. & GOCKEL, C. M. ( 2003). Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunology and Medical Microbiology 18, 1322.CrossRefGoogle Scholar
CHAO, T. C., VAN ALTEN, P. J. & WALTER, R. J. ( 1994). Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. American Journal of Reproductive Immunology 32, 4352.CrossRefGoogle Scholar
CHAO, T. C., CHAO, H. H., CHEN, M. F., GREAGER, J. A. & WALTER, R. J. ( 2000). Female sex hormones modulate the function of LPS-treated macrophages. American Journal of Reproductive Immunology 44, 310318.CrossRefGoogle Scholar
CHAOUAT, G., ZOURBAS, S., OSTOJIC, S., LAPPREE-DELAGE, G., DUBANCHET, S., LEDEE, N. & MARTAL, J. ( 2002). A brief review of recent data on some cytokine expressions at the materno-foetal interface which might challenge the classical Th1/Th2 dichotomy. Journal of Reproductive Immunology 53, 241256.CrossRefGoogle Scholar
CHARNIGA, L., STEWART, G. L., KRAMAR, G. W. & STANFIELD, J. A. ( 1981). The effect of host sex on enteric response to infection with Trichinella spiralis. Journal of Parasitology 67, 917922.CrossRefGoogle Scholar
DENNIS, D., DESPOMMIER, D. D. & DAVID, N. ( 1970). Infectivity of newborn larvae of Trichinella spiralis in the rat. Journal of Parasitology 56, 974977.CrossRefGoogle Scholar
FREEMAN, M. E. ( 1994). The neuroendocrine control of the ovarian cycle of the rat. In The Physiology of Reproduction (ed. Konbil, E. & Neill, J. D.), pp. 613749. Raven Press, New York.
GONZALEZ, C., DIAZ, F., FERNANDEZ, M. & PATTERSON, A. M. ( 1997). Role of 17-β estradiol and progesterone on glucose homeostasis: effects of food restriction (50%) in pregnant and non-pregnant rats. Journal of Endocrinological Investigations 20, 397403.CrossRefGoogle Scholar
GONZALEZ, C., ALONSO, A., ALVAREZ, N., DIAZ, F., MARTINEZ, M., FERNANDEZ, M. & PATTERSON, A. M. ( 2000). Role of 17-β estradiol and/or progesterone on insulin sensitivity in the rat: implications during pregnancy. Journal of Endocrinology 166, 283291.CrossRefGoogle Scholar
KAUSHIC, C., ZHOU, F., MURDIN, A. D. & WIRA, C. R. ( 2000). Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infection and Immunity 68, 42074216.CrossRefGoogle Scholar
LARSH, J. E. & KENT, D. E. ( 1949). The effect of alcohol on natural and acquired immunity of mice infection with Trichinella spiralis. Journal of Parasitology 35, 4553.CrossRefGoogle Scholar
LETSKY, E. ( 1980). The haematological system. In Clinical Physiology in Obstetrics (ed. Hytten, F. & Chamberlain, G.), pp. 4347. Blackwell Science Ltd, Oxford.
NUÑEZ, G. G., GENTILE, T., CALCAGNO, M. L. & VENTURIELLO, S. M. ( 2002). Increased parasiticide activity against Trichinella spiralis newborn larvae during pregnancy. Parasitology Research 88, 661667.Google Scholar
PICCINI, M. P., GIUDIZI, M. G., BIAGIOTTI, R., BELONI, L., GIANNARINI, L., SAMPOGNARO, S., PARRONCHI, P., MANETTI, R., ANNUNZIATO, R., LIVI, C., ROMAGNANI, S. & MAGGI, E. ( 1995). Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. Journal of Immunology 155, 128133.Google Scholar
RAVELLI, A., MASSOBRIO, M. & TESARIK, J. ( 1998). Nongenomic actions of steroid hormones in reproductive tissues. Endocrine Reviews 19, 317.CrossRefGoogle Scholar
ROBERTS, C. W., SATOSKAR, A. & ALEXANDER, J. ( 1996). Sex steroids, pregnancy-associated hormones and immunity to parasitic infection. Parasitology Today 12, 382388.CrossRefGoogle Scholar
ROITT, I. M. & DELVES, P. J. ( 2003). Inumnidad adquirida específica. In Inmunología Fundamentos (ed. Roitt, I. M. & Delves, P. J.), pp. 2340. Editorial Médica Panamericana, Buenos Aires.
SACKS, G. P., STUDENA, K., SARGENT, I. L. & REDMAN, C. W. G. ( 1997). CD11b expression on circulating neutrophils in pre-eclampsia. Clinical Sciences 93, 187189.CrossRefGoogle Scholar
SACKS, G. P., STUDENA, K., SARGENT, I. L. & REDMAN, C. W. G. ( 1998). Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. American Journal of Obstetrics and Gynecology 179, 8086.CrossRefGoogle Scholar
SACKS, G. P., SARGENT, I. L. & REDMAN, C. W. G. ( 1999). An innate view of human pregnancy. Immunology Today 20, 114118.CrossRefGoogle Scholar
SHIBUYA, T., IZUCHI, K., KUROIWA, A., OKABE, N. & SHIRAKAWA, K. ( 1987). Study on non-specific immunity in pregnant women: increased chemiluminescence response of peripheral blood phagocytes. American Journal of Reproductive Biology and Microbiology 15, 1923.Google Scholar
TERRAZAS, L. I., BOJALIL, R., GOVEZENSKY, T. & LARRALDE, C. ( 1994). A role for 17-β estradiol in immunoendocrine regulation of murine cysticercosis (Taenia crassiceps). Journal of Parasitology 80, 563569.CrossRefGoogle Scholar
VEENSTRA VAN NIEUWENHOVEN, A. L., BOUMAN, A., MOES, H., VAN DER SCHAAF, G. C. J., SCHUILING, G. A., HEINEMAN, M. J., DE LEIJ, F. M. L. H., SANTEMA, J. & FAAS, M. M. ( 2002). Cytokine production by NK-cells as well as by lymphocytes in pregnant women as compared with women in the follicular phase of the ovarian cycle. Fertility and Sterility 77, 10321037.CrossRefGoogle Scholar
VERTHELI, D. & KLINMAN, D. M. ( 2000). Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo. Immunology 100, 384390.CrossRefGoogle Scholar