Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T13:21:00.410Z Has data issue: false hasContentIssue false

The inactivation of plant viruses by radiations

II. The relation between inactivation dose and size of virus

Published online by Cambridge University Press:  06 April 2009

D. E. Lea
Affiliation:
Strangeways Research Laboratory, and Plant Virus Research Station, Cambridge
Kenneth M. Smith
Affiliation:
Strangeways Research Laboratory, and Plant Virus Research Station, Cambridge

Extract

Experiments are described on the inactivation by gamma-rays, X-rays, and alpha-rays of the viruses of tomato bushy stunt, tobacco necrosis, tobacco ringspot, tobacco mosaic and potato virus X. Within the errors of the experiment the inactivation curves appear to be exponential, and the inactivation doses increase in the order gamma-rays, X-rays, of wave-length 1·5 A., X-rays of wave-length 8·3 A., and alpha-rays.

A theory is given explaining these results and correlating the inactivation dose with the virus size. Estimates of the sizes of the viruses obtained from the radiation experiments he within the range of the sizes given by other methods, but are somewhat lower than the most probable sizes. Possible explanations of the discrepancy which are discussed are (a) the virus particle is not the molecule, in the sense of the smallest infective unit, or (b) certain structural changes in the virus molecule produced by the radiation may still leave it infective. Some of these may perhaps show themselves as mutations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bawden, F. C. (1941). Brit. J. Exp. Path. 22, 59.Google Scholar
Bernal, J. D. & Fankuchen, L. (1941). J. Gen. Physiol. 25, 111.CrossRefGoogle Scholar
Bernal, J. D., Fankuchen, I. & Riley, D. P. (1938). Nature, Land., 142, 1075.CrossRefGoogle Scholar
Dale, W. M. (1940). Biochem. J. 34, 1367.CrossRefGoogle Scholar
Gowen, J. W. (1939). 3rd Int. Cancer Congress, Atlantic City.Google Scholar
Gowen, J. W. (1940). Proc. Nat. Acad. Sci., Wash., 26, 8.CrossRefGoogle Scholar
Kausche, G. A. & Stubbe, H. (1939). Naturwissenschaften, 27, 501.CrossRefGoogle Scholar
Lea, D. E. (1940 a). Nature, Bond., 146, 137.CrossRefGoogle Scholar
Lea, D. E. (1940 b). J. Genet. 39, 181.CrossRefGoogle Scholar
Lea, D. E. (1941). Amer. J. Roentg. 45, 614.Google Scholar
Lea, D. E. & Smith, K. M. (1940). Parasitology, 32, 405.CrossRefGoogle Scholar
Lea, D. E., Haines, R. B. & Bretscher, E. (1941). J. Hyg., Camb., 41, 1.CrossRefGoogle Scholar
Lea, D. E. & Salaman, M. H. (1942). Brit. J. Exp. Path. 23, 27.Google Scholar
Lind, S. C. (1928). Chemical Effects of Alpha Particles and Electrons. Chem. Catalog Co.Google Scholar
Loring, H. S. (1938). J. Biol. Chem. 126, 455.CrossRefGoogle Scholar
Luria, S. E. & Exner, F. M. (1941). Proc. Nat. Acad. Sci., Wash., 27, 370.CrossRefGoogle Scholar
Markham, R., Smith, K. M. & Lea, D. E. (1942). Parasitology (in the Press).Google Scholar
Miller, G. L. & Stanley, W. M. (1941). J. Biol. Chem. 141, 905.CrossRefGoogle Scholar
Pirie, N. W., Smith, K. M., Spooner, E. T. & MacClement, W. D. (1938). Parasitology, 30, 543.CrossRefGoogle Scholar
Price, W. C. & Wyckoff, R. W. G. (1939). Phytopath. 29, 83.Google Scholar
Smith, K. M. & MacClement, W. D. (1940). Parasitology, 32, 320.CrossRefGoogle Scholar
Smith, K. M. & MacClement, W. D. (1941). Parasitology, 33, 320.CrossRefGoogle Scholar
Stanley, W. M. (1939). J. Biol. Chem. 129, 405.CrossRefGoogle Scholar
Stanley, W. M. & Anderson, T. F. (1941). J. Biol. Chem. 139, 325.CrossRefGoogle Scholar