Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T06:25:05.836Z Has data issue: false hasContentIssue false

Infestation of the cupped oysters Crassostrea angulata, C. gigas and their first-generation hybrids by the copepod Myicola ostreae: differences in susceptibility and host response

Published online by Cambridge University Press:  05 March 2009

F. M. BATISTA*
Affiliation:
Instituto Nacional de Recursos Biológicos, INRB/IPIMAR, Av. 5 de Outubro, 8700-305 Olhão, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
P. BOUDRY
Affiliation:
Ifremer, UMR M100 Physiologie et Ecophysiologie des Mollusques marins, BP 70, 29280 Plouzané, France
A. DOS SANTOS
Affiliation:
Instituto Nacional de Recursos Biológicos, INRB/IPIMAR, Av. de Brasília, 1449-006 Lisboa, Portugal
T. RENAULT
Affiliation:
Ifremer, Laboratoire de Génétique et Pathologie (LGP), 17390 La Tremblade, France
F. RUANO
Affiliation:
Instituto Nacional de Recursos Biológicos, INRB/IPIMAR, Av. de Brasília, 1449-006 Lisboa, Portugal
*
*Corresponding author. Present address: School of Ocean Sciences, Bangor University, Menai Bridge, Gwynedd LL59 5EY, UK. E-mail: fmbatista@yahoo.com

Summary

We studied the prevalence and intensity of the parasitic copepod Myicola ostreae in 2 closely related oysters Crassostrea angulata and C. gigas and their F1 hybrids. The effects on host and host reaction were also analysed to better understand host-parasite relationships between copepods and bivalve molluscs. Full reciprocal crosses were carried out between C. angulata and C. gigas and the progenies were reared in the wild in Ria Formosa Lagoon (Portugal), allowing natural infestation by M. ostreae. Prevalence and intensity were significantly higher in C. angulata than in C. gigas. The parasite level of F1 hybrids was similar to C. angulata and significantly higher than in C. gigas. The results of our study support a hypothesis of dominantly inherited susceptibility to M. ostreae infestation. Moreover, copepods were observed on the gill surface of C. gigas engulfed by a capsule-like structure. Histological analyses revealed that the copepods were surrounded by a massive agglomerate of haemocyte-like cells encircled by a thin layer of fibroblast-like cells. This encapsulation response was not observed in C. angulata or in F1 hybrids. These results suggest that the differential susceptibility to M. ostreae between C. angulata and C. gigas may be ascribed to host defence factors.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batista, F. M., Ben-Hamadou, R., Fonseca, V. G., Taris, N., Ruano, F., Reis-Henriques, M. A. and Boudry, P. (2008). Comparative study of shell shape and muscle scar pigmentation in the closely related cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids. Aquatic Living Resources 21, 3138.CrossRefGoogle Scholar
Batista, F. M., Leitão, A., Fonseca, V. G., Ben-Hamadou, R., Ruano, F., Henriques, M. A., Guedes-Pinto, H. and Boudry, P. (2007). Individual relationship between aneuploidy of gill cells and growth rate in the cupped oysters Crassostrea angulata, C. gigas and their reciprocal hybrids. Journal of Experimental Marine Biology and Ecology 352, 226233.CrossRefGoogle Scholar
Boudry, P., Heurtebise, S., Collet, B., Cornette, F. and Gérard, A. (1998). Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg) revealed by mtDNA RFLP analysis. Journal of Experimental Marine Biology and Ecology 226, 279291.CrossRefGoogle Scholar
Buroker, N. E., Hershberger, W. K. and Chew, K. K. (1979). Population genetics of the family Ostreidae. I. Intraspecific studies of Crassostrea gigas and Saccostrea commercialis. Marine Biology 54, 157169.CrossRefGoogle Scholar
Cáceres-Martínez, C. and Vásquez-Yeomans, R. (1997). Presence and histopathological effects of the copepod Pseudomyicola spinosus in Mytilus galloprovincialis and Mytilus californianus. Journal of Invertebrate Pathology 70, 150155.CrossRefGoogle ScholarPubMed
Carton, Y. (1967). Spécificité parasitaire de Sabelliphilus sarsi, parasite de Spirographis spallanzani. 2. Réactions histologiques des hôtes lors des contaminations expérimentales. Archives de Zoologie Expérimentale et Générale 108, 387411.Google Scholar
Cheng, T. C. and Rifkin, E. (1970). Cellular reactions in marine molluscs in response to helminth parasitism. In A Symposium on Diseases of Fishes and Shellfishes, Special Publication 5 (ed. Snieszko, S. F.), pp. 443496. American Fisheries Society, Washington, DC, USA.Google Scholar
Comps, M. (1972). Sur un copépode parasite de l'huître portugaise (Crassostrea angulata Lmk) dans le Bassin de Marennes-Oléron. Conseil International Exploration Mer, Com. Crustacés, Coquilles Benthiques CM 1972, K 35.Google Scholar
Coustau, C., Renaud, F., Maillard, C., Pasteur, N. and Delay, B. (1991). Differential susceptibility to a trematode parasite among genotypes of the Mytilus edulis/galloprovincialis complex. Genetical Research 57, 207212.CrossRefGoogle ScholarPubMed
Figueras, A. J., Jardon, C. F. and Caldas, J. R. (1991). Diseases and parasites of rafted mussels (Mytilus galloprovincialis Lmk): Preliminary results. Aquaculture 99, 1733.CrossRefGoogle Scholar
Fritz, R. S., Moulia, C. and Newcombe, G. (1999). Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annual Review of Ecology and Systematics 30, 565591.CrossRefGoogle Scholar
Gee, J. M. and Davey, J. T. (1986). Experimental studies on the infestation of Mytilus edulis (L.) by Mytilicola intestinalis Steuer (Copepoda, Cyclopoida). ICES Journal of Marine Science 42, 265271.CrossRefGoogle Scholar
Grizel, H. and Héral, M. (1991). Introduction into France of the Japanese oyster (Crassostrea gigas). ICES Journal of Marine Science 47, 399403.CrossRefGoogle Scholar
Haure, J., Huvet, A., Palvadeau, H., Nourry, M., Penisson, C., Martin, J. L. Y. and Boudry, P. (2003). Feeding and respiratory time activities in the cupped oysters Crassostrea gigas, Crassostrea angulata and their hybrids. Aquaculture 218, 539551.CrossRefGoogle Scholar
His, E. (1972). Premiers éléments de comparaison entre l'huître portugaise et l'huître japonaise. Science et Pêche. Bulletin de l'Institut des Pêches Maritimes 219, 19.Google Scholar
His, E. (1979). Mytilicolides et Myicolides parasites des lamellibranches d'intérêt commercial du Bassin d'Arcachon. Haliotis 8, 99102.Google Scholar
Ho, J.-S. and Zheng, G.-X. (1994). Ostrincola koe (Copepoda, Myicolidae) and mass mortality of cultured hard clam (Meretrix meretrix) in China. Hydrobiologia 284, 169173.CrossRefGoogle Scholar
Ho, J.-S. (2000). Myicolid copepods parasitic in bivalves of Asia. National Taiwan Museum Special Publication Series 10, 7585.Google Scholar
Ho, J.-S. (2001). Why do symbiotic copepods matter? Hydrobiologia 453/454, 17.CrossRefGoogle Scholar
Hoshina, T. and Sugiura, Y. (1953). On two new species of parasitic copepods of mollusks. Journal of the Tokyo University of Fisheries 40, 2533.Google Scholar
Humes, A. G. (1994). How many copepods? Hydrobiologia 292/293, 17.CrossRefGoogle Scholar
Huvet, A., Lapègue, S., Magoulas, A. and Boudry, P. (2000). Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conservation Genetics 1, 251262.CrossRefGoogle Scholar
Huvet, A., Balabaud, K., Bierne, N. and Boudry, P. (2001). Microsatellite analysis of 6-hour-old embryos reveals no preferential intra-specific fertilization between cupped oysters Crassostrea gigas and Crassostrea angulata. Marine Biotechnology 3, 448453.CrossRefGoogle Scholar
Huvet, A., Gérard, A., Ledu, C., Phélipot, P., Heurtebise, S. and Boudry, P. (2002). Is fertility of hybrids enough to conclude that the two oysters Crassostrea gigas and Crassostrea angulata are the same species? Aquatic Living Resources 15, 4552.CrossRefGoogle Scholar
Huvet, A., Fabioux, C., McCombie, H., Lapègue, S. and Boudry, P. (2004). Natural hybridization between genetically differential populations of Crassostrea gigas and C. angulata highlighted by sequence variation in flanking regions of a microsatellite locus. Marine Ecology Progress Series 272, 141152.CrossRefGoogle Scholar
Kabata, Z. (1981). Copepoda (Crustacea) parasitic on fishes: problems and perspectives. Advances in Parasitology 19, 171.Google Scholar
Kim, I. H. (2004). Poecilostomatoid copepods associated with bivalves in Korea and their distribution. Zoological Studies 43, 187192.Google Scholar
Knopf, K. and Mahnke, M. (2004). Differences in susceptibility of the European eel (Anguilla anguilla) and the Japanese eel (Anguilla japonica) to the swim-bladder nematode Anguillicola crassus. Parasitology 129, 491496.CrossRefGoogle Scholar
Lauckner, G. (1983). Diseases of Mollusca: Bivalvia. In Diseases of Marine Animals, Vol. 2 (ed. Kinne, O.), pp. 477961. Biologische Anstalt Helgoland, Hamburg, Germany.Google Scholar
Leitão, A., Chaves, R., Santos, S., Guedes-Pinto, H. and Boudry, P. (2007). Interspecific hybridization in oysters: restriction enzyme digestion chromosome banding confirms Crassostrea angulata×Crassostrea gigas F1 hybrids. Journal of Experimental Marine Biology and Ecology 343, 253260.CrossRefGoogle Scholar
Lin, C.-L. and Ho, J.-S. (1999). Poecilostomatoid copepods parasitic in bivalve mollusks in Taiwan. The Publication of the Seto Marine Biological Laboratory 38, 201218.CrossRefGoogle Scholar
Menzel, R. W. (1974). Portuguese and Japanese oysters are the same species. Journal of the Fisheries Research Board of Canada 31, 453456.CrossRefGoogle Scholar
Moulia, C. (1999). Parasitism of plant and animal hybrids: are facts and fates the same? Ecology 80, 392406.CrossRefGoogle Scholar
O'Foighil, D., Gaffney, P. M., Wilbur, A. E. and Hilbish, T. J. (1998). Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Marine Biology 131, 497503.CrossRefGoogle Scholar
Olivas-Valdez, J. A. and Cáceres-Martínez, C. (2002). Infestation of the blue mussel Mytilus galloprovincialis by the copepod Pseudomyicola spinosus and its retain to size, density, and condition index of the host. Journal of Invertebrate Pathology 79, 6571.CrossRefGoogle Scholar
Pike, A. W. and Wadsworth, S. L. (1999). Sea lice on salmonids: their biology and control. Advances in Parasitology 44, 233337.CrossRefGoogle Scholar
Prévost, G., Eslina, P., Dourya, G., Moreaub, S. J. M. and Guillota, S. (2005). Asobara, braconid parasitoids of Drosophila larvae: unusual strategies to avoid encapsulation without VLPs. Journal of Insect Physiology 51, 171179.CrossRefGoogle ScholarPubMed
Ruesink, J. L., Lenihan, H. S., Trimble, A. C., Heiman, K. W., Micheli, F., Byers, J. E. and Kay, M. C. (2005). Introduction of non-native oysters: Ecosystem effects and restoration implications. Annual Review of Ecology, Evolution, and Systematics 36, 643689.CrossRefGoogle Scholar
Streftaris, N., Zenetos, A. and Papathanassiou, E. (2005). Globalisation in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanography and Marine Biology 43, 419453.Google Scholar
Yang, X. and Cox-Foster, D. L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences, USA 102, 74707475.CrossRefGoogle ScholarPubMed
Wolinska, J., Lively, C. M. and Spaak, P. (2007). Parasites in hybridizing communities: the Red Queen again? Trends in Parasitology 24, 121126.CrossRefGoogle Scholar