Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T04:39:43.723Z Has data issue: false hasContentIssue false

Inflammatory interactions in fish exposed to pollutants and parasites: a role for apoptosis and C reactive protein

Published online by Cambridge University Press:  10 November 2003

D. HOOLE
Affiliation:
Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
J. W. LEWIS
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, TW20 0EX, Surrey
P. M. M. SCHUWERACK
Affiliation:
Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK School of Biological Sciences, Royal Holloway, University of London, Egham, TW20 0EX, Surrey
C. CHAKRAVARTHY
Affiliation:
Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
A. K. SHRIVE
Affiliation:
Centre for Molecular Biomedicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
T. J. GREENHOUGH
Affiliation:
Centre for Molecular Biomedicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
J. R. CARTWRIGHT
Affiliation:
Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK Centre for Molecular Biomedicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK

Abstract

Although previous studies have highlighted the inflammatory responses of fish infected with parasites and exposed to pollutants, very little is known about how these two stressors interact within the fish. In this review, which also contains original data, the effect of these two parameters on the fish inflammatory response is assessed and, in particular, the role of apoptosis and the acute phase protein, C reactive protein, is evaluated. In Cyprinus carpio exposed to 0·5 mg NH4+ l−1 or 0·1 mg Cd2+ l−1 and experimentally infected with the blood fluke, Sanguinicola inermis, the pollutant type and the order in which the fish experiences the parasite and toxicant, significantly affects the ultrastructural appearance and cellular content of the pronephros and thymus. This is reflected in the intensity of infection where the pollutant appears to have less effect on an established infection. Both stressors, pollutant and infection, may mediate their effects via the endocrine system. Studies have revealed that cortisol at 100 ng ml−1 is able to induce apoptosis in pronephric cells of carp and that an increase in apoptosis is associated with an increase in phagocytosis in this immune organ. In addition, C reactive protein, which is used as a biomarker of the inflammatory response in humans and other mammals, is evaluated as a possible indicator of physiological states in fish exposed to pathogens and pollutants.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALFORD, P. B., TOMASSO, J. R., BODINE, A. B. & KENDALL, C. (1994). Apoptotic death of peripheral leukocytes in channel catfish: Effect of confinement-induced stress. Journal of Aquatic Animal Health 6, 6469.2.3.CO;2>CrossRefGoogle Scholar
BALM, P. H. J. D., PEPELS, S., HELFRICH, M. L. M., HOVENS, M. L. M. & WENDELAAR BONGA, S. E. (1994). Adrenocorticotropic hormone in relation to interrenal function during stress in tilapia (Orechromis mossambicus). General Comparative Endocrinology 96, 347360.CrossRefGoogle Scholar
BARCINSKI, M. A. & DOSREIS, G. A. (1999). Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases. Brazilian Journal of Medical and Biological Research 32, 395401.CrossRefGoogle Scholar
BENNET, R. O. & WOLKE, R. E. (1987). The effect of sublethal endrin exposure on rainbow trout, Salmo gairdneri Richardson. II. The effect of altering serum cortisol concentrations on the immune response. Journal of Fish Biology 31, 387394.Google Scholar
BROEG, K., ZANDER, S., DIAMANT, A., KORTING, W., KRUNER, G., PAPERNA, I. & WESTERNHAGEN, H. V. (1999). The use of fish metabolic, pathological and parasitological indices in monitoring pollution I North Sea. Helgoland Marine Research 53, 171194.CrossRefGoogle Scholar
BURY, N. R., JIE, L., FLIK, G., LOCK, R. A. C. & WENDELAAR BONGA, S. E. (1998). Cortisol protects against copper induced necrosis and promotes apoptosis in fish gill chloride cells in vitro. Aquatic Toxicology 40, 193202.CrossRefGoogle Scholar
DIAMANT, A., BANET, A., PAPERNA, I., WESTERNHAGEN, H. V., BROEG, K., KRUENER, G., KOERTING, W. & ZANDER, S. (1999). The use of fish metabolic, pathological and parasitological indices in monitoring pollution I The Red Sea and Mediterranean. Helgoland Marine Research 53, 195208.CrossRefGoogle Scholar
DU CLOS, T. W. (1997). The interaction of C-reactive protein and serum amyloid P component with nuclear antigens. Molecular Biology Reports 23, 253260.Google Scholar
EDWARDS, K. M., GEWURZ, H., LINT, T. F. & MOLD, C. (1982). A role for C reactive protein in the complement-mediated stimulation of human neutrophils by type 27 Streptococcus pneumonie. Journal of Immunology 128, 24932496.Google Scholar
ESPELID, S., LOKKEN, G. B., STEIRO, K. & BOGWALD, J. (1996). Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar L.). Fish and Shellfish Immunology 6, 95110.CrossRefGoogle Scholar
EVANS, N. A. (1982 a). Effect of copper and zinc upon the survival and infectivity of Echinoparyphium recurvatum cercariae. Parasitology 85, 295303.Google Scholar
EVANS, N. A. (1982 b). Effect of copper and zinc upon the life cycle of Notocotylus attenuatus (Digenea: Notocotylidae). International Journal for Parasitology 12, 363369.Google Scholar
FLEMING, M. W. (1997). Cortisol as an indicator of severity of parasitic infections of Haemonchus contortus in lambs (Ovis aries). Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology 116, 4144.CrossRefGoogle Scholar
FLEMING, M. W. (1998). Experimental inoculations with Ostertagia ostertagi or exposure to artificial illumination alter peripheral cortisol in dairy calves (Bos taurus). Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology 119, 315319.CrossRefGoogle Scholar
FUJIKI, K., BAYNE, C. J., SHIN, D.-H., NAKAO, M. & YANI, T. (2001). Molecular cloning of carp (Cyprinus carpio) c-type lectin and pentraxin by use of suppression subtractive hybridisation. Fish and Shellfish Immunology 11, 275279.CrossRefGoogle Scholar
GEWURZ, H., ZHONG, X.-H. & LINT, T. F. (1995). Structure and function of pentraxins. Current Opinion in Immunology 7, 5464.CrossRefGoogle Scholar
GHOSH, S. & BHATTACHARYA, S. (1992). Elevation of C-reactive protein in serum of Channa punctatus as an indicator of water pollution. Indian Journal of Experimental Biology 30, 736737.Google Scholar
GON, S., SAITO, S., TAKEDA, Y., MIYATA, H., TAKATSU, K. & SENDO, F. (1997). Apoptosis and in vivo distribution and clearance of eosinophils in normal and Trichinella spiralis-infected rats. Journal of Leukocyte Biology 62, 309317.CrossRefGoogle Scholar
GREENLEE, A. R., BROWN, R. A. & RISTOW, S. S. (1991). Nonspecific cytotoxic-cells of rainbow trout (Oncorhynchus-mykiss) kill YCA-1 target by both necrotic and apoptotic mechanisms. Developmental and Comparative Immunology 3, 153164.CrossRefGoogle Scholar
GRUTTER, A. S. & PANKHURST, N. W. (2000). The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus. Journal of Fish Biology 57, 391401.CrossRefGoogle Scholar
HARRIS, P. D., SOLENG, A. & BAKKE, T. A. (2000). Increased susceptibility of salmonids to the monogenean Gyrodactylus salaris following administration of hydrocortisone acetate. Parasitology 120, 5764.CrossRefGoogle Scholar
HEUSSLER, V. T., KUENZI, P. & ROTTENBERG, S. (2001). Inhibition of apoptosis by intracellular protozoan parasites. International Journal for Parasitology 31, 11661176.CrossRefGoogle Scholar
HOLLIMAN, R. B. & ESHAM, L. P. (1977). Toxicity of cadmium to Schistosoma mansoni cercariae: effects on vitality and development ability in white mice. Hydrobiologia 56, 8188.CrossRefGoogle Scholar
HOOLE, D. (1997). The effects of pollutants on the immune response of fish: implications for helminth parasites. Parassitologia 39, 219225.Google Scholar
HOOVER, G. J., EL-MOWAFI, A., SIMKO, E., KOCAL, T. E., FERGUSON, M. & HAYES, A. (1998). Plasma proteins of rainbow trout (Oncorhynchus mykiss) isolated by binding to lipopolysaccharide from Aeromonas salmonicida. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology 120, 559569.CrossRefGoogle Scholar
IGER, Y., BALM, P. H. N. & WENDELAAR BONGA, S. E. (1994 b). Cellular responses of the skin and changes in plasma cortisol levels in trout (Oncorhynchus mykiss) exposed to acidified water. Cell and Tissue Research 278, 535542.Google Scholar
IGER, Y., LOCK, R. A. C., JENNER, H. A. & WENDELAAR BONGA, S. E. (1994 c). Cellular responses in the skin of carp (Cyprinus carpio) exposed to copper. Aquatic Toxicology 29, 4964.Google Scholar
IGER, Y., LOCK, R. A. C., VAN DER MEIJ, J. C. A. & WENDELAAR BONGA, S. E. (1994 a). Effects of water-borne cadmium on the skin of common carp (Cyprinus carpio). Archives of Environmental Contamination and Toxicology 26, 342350.Google Scholar
IQBAL, N. A. M. & SOMMERVILLE, C. (1986). Effects of Sanguinicola inernmis Plehn, 1905 (Digenea: Sanguinicolidae) infection on growth performance and mortality in carp, Cyprinus carpio. Aquaculture and Fisheries Management 17, 117122.Google Scholar
JANZ, D. M., McMASTER, M. E., WEBER, L. P., MUNKITTRICK, K. R. & VAN DER KRAAK, G. (2001). Recovery of ovary size, follicle cell apoptosis, and HSP70 expression in fish exposed to bleached pulp mill effluent. Canadian Journal of Fisheries and Aquatic Sciences 58, 620625.CrossRefGoogle Scholar
JENSEN, L. E., HINEY, M. P., SHIELDS, D. C., UHLAR, C. M., LINDSAY, A. J. & WHITEHEAD, A. S. (1997). Acute phase proteins in salmonids. Journal of Immunology 153, 384392.Google Scholar
JENSEN, L. E., PETERSEN, T. E., THEIL, S. & JENSENIUS, J. C. (1995). Isolation of a pentraxin-like protein from rainbow trout serum. Developmental and Comparative Immunology 19, 305314.CrossRefGoogle Scholar
JULLIARD, A. K., SAUCIER, D. & ASTIC, L. (1993). Effects of chronic low level copper exposure on ultrastructure of the olfactory system in rainbow trout. Histology and Histopathology 8, 665672.Google Scholar
JUNG, S. K., MAI, A., ARIZONO, N., FUJIMOTO, D., SAKAMAKI, K. & TONEHARA, S. (2000). Purification and cloning of an apoptosis-inducing protein derived from fish infected with Anisakis simplex, a causative nematode of human anaisakiasis. Journal of Immunology 165, 14911497.CrossRefGoogle Scholar
KIRK, R. S. & LEWIS, J. W. (1993). The life cycle and morphology of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae). Systematic Parasitology 25, 125133.CrossRefGoogle Scholar
KUNZ, Y. W., WILDENBURGE, G., GOODRICH, L. & CALLAGHAN, E. (1994). The fate of ultraviolet receptors in the retina of the Atlantic Salmon (Salmo salar). Vision Research 34, 13751383.CrossRefGoogle Scholar
LEE, R. S. (1990). The development of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae) in common carp, Cyprinus carpio L. Ph.D. Thesis, Royal Holloway and Bedford New College, University of London, UK.
LEE, P. C., GOODRICH, M., STRUVE, M., YOON, H. L. & WEBER, D. (1992). Liver and brain glucocorticoid receptor in rainbow trout, Oncorhynchus mykiss: down-regulation by dexamethasone. General and Comparative Endocrinology 87, 222231.CrossRefGoogle Scholar
LI, Y. P., MOLD, C. & DU CLOS, T. W. (1994). Sublytic complement attack exposes C-reactive protein binding sites on cell membranes. Journal of Immunology 152, 29953005.Google Scholar
LUDER, C. G. K., GROSS, U. & LOPES, M. F. (2001). Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends in Parasitology 17, 480486.CrossRefGoogle Scholar
LUND, V. & OLAFSEN, J. A. (1998). A comparative study of pentraxin-like proteins in different fish species. Developmental and Comparative Immunology 22, 185194.CrossRefGoogle Scholar
LUND, V. & OLAFSEN, J. A. (1999). Changes in serum concentration of a serum amyloid P-like pentraxin in Atlantic salmon, Salmo salar L., during infection and inflammation. Developmental and Comparative Immunology 23, 6170.Google Scholar
MAULE, A. G. & SCHRECK, C. B. (1991). Stress and cortisol treatment changed affinity and number of glucocorticoid receptors in leukocytes and gill of coho salmon. General and Comparative Endocrinology 84, 8393.CrossRefGoogle Scholar
MESEGUER, J., ESTEBAN, M. A. & MALERO, V. (1996). Nonspecific cell-mediated cytotoxicity in the sea water teleosts (Sparus aurata and Dicentrarchus labrax). Ultrastructural study of target cell death mechanism. Anatomy & Anatomical Record 4, 499505.Google Scholar
MOLD, C., GRESHAM, H. D. & DU CLOS, T. W. (2001). Seum amplyloid component and C-reactive protein mediate phagocytosis through murine Fcyrs. Journal of Immunology 166, 12001205.CrossRefGoogle Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2001 a). Toxicity of cadmium and zinc to encystment of and in vitro excystment of Parorchis acanthus (Digenea: Philophthalidae). Parasitology 122, 7579.Google Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2001 b). Toxicity of cadmium and zinc to miracidia of Schistosome mansoni. Parasitology 122, 8185.Google Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2002 a). Toxicity of cadmium and zinc on the transmission of Echinoparyphium recurvatum cercariae. Journal of Helminthology 76, 157163.Google Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2002 b). Toxicity of cadmium and zinc to cercarial tail loss in Diplostomum spathaceum (Trematoda: Diplostomidae). Parasitology 125, 293301.Google Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2002 c). Toxicity of cadmium and zinc mixtures to Diplostomum spathaceum (Trematoda: Diplostomidae). Archives of Environmental Contamination and Toxicology 43, 2833.Google Scholar
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2002 d). Toxicity of cadmium and zinc to encystment of Notocotylus attenuatus (Trematoda: Notocotylidae). Ecotoxicology and Environmental Safety 53, 129133.Google Scholar
MOSER, M. (1991). Parasites as biological tags. Parasitology Research 7, 182185.CrossRefGoogle Scholar
MURAKAWA, M., JUNG, S. K. & YONEHARA, S. (2001). Apoptosis-inducing protein, AIP, from parasite-infected fish induces apoptosis in mammalian cells by two different molecular mechanisms. Cell Death and Differentiation 8, 298307.CrossRefGoogle Scholar
MURATA, M., KODAMA, H. & ONUMA, M. (1995). Characterisation of rainbow trout C-polysaccharide binding proteins. Journal of Veterinary Medical Science 57, 419425.CrossRefGoogle Scholar
MURATA, M., ONUMA, M. & KODAMA, H. (1994). Isolation and characterisation of rainbow trout (Oncorhynchus mykiss) serum amyloid P component (SAP). Journal of Veterinary Medical Science 56, 661665.CrossRefGoogle Scholar
NOLAN, D. T., VAN DER SALEM, A. L. & WENDELAAR BONGA, S. E. (2000). The host-parasite relationship between the rainbow trout (Oncorhynchus mykiss) and the ectoparasite Argulus foliaceus (Crustacea: Branchiura): epithelial mucous cell response, cortisol and factors which may influence parasite establishment. Contributions to Zoology 69, 5763.Google Scholar
PAUL, I., MANDAL, C. & MANDAL, C. (1998). Effect of environmental pollutants on the C-reactive protein of a freshwater Major carp, Catla catla. Developmental and Comparative Immunology 22, 519532.CrossRefGoogle Scholar
PEPYS, M. B. (2001). The renaissance of C reactive protein. British Medical Journal 322, 45.CrossRefGoogle Scholar
PEPYS, M. B., BALTZ, M., GOMER, K., DAVIES, A. J. S. & DOENHOFF, M. (1979). Serum amyloid P-component is an acute-phase reactant in the mouse. Nature 278, 259261.CrossRefGoogle Scholar
PEPYS, M. B., BOOTH, S. E., TENNENT, G. A., BUTLER, P. J. G. & WILLIAMS, D. G. (1994). Binding of pentraxins to different nuclear structures: C-reactive protein binds to small nuclear ribonucleoprotein particles, serum amyloid P component binds to chromatin and nucleoli. Clinical and Experimental Immunology 97, 152157.CrossRefGoogle Scholar
PEPYS, M. B., DE BEER, F. C., MILSTEIN, C. P., MARCH, J. F., FEINSTEIN, A., BUTRESS, N., CLAMP, J. R., TAYLOR, J., BRUTON, C. & FLETCHER, T. C. (1982). C-reactive protein and serum amyloid P component in the plaice (Pleuronectes platessa L.), a marine teleost, are homologous with their human counterparts. Biochimica et Biophysica Acta 704, 123133.Google Scholar
POOLE, W. R., NOLAN, D. & TULLY, O. (2000). Modelling the effects of capture and sea lice [Lepeophtheirus salmonis (Kroyer)] infestation on the cortisol stress response in trout. Aquaculture Research 31, 835841.CrossRefGoogle Scholar
POTTINGER, T. G. (1990). The effect of stress and exogenous cortisol on receptor-like binding of cortisol in the liver of rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology 78, 194203.CrossRefGoogle Scholar
POTTINGER, T. G. & BRIERLEY, I. (1997). A putative cortisol receptor in the rainbow trout erythrocyte: stress prevents starvation-induced increases in specific binding of cortisol. Journal of Experimental Biology 200, 20352043.Google Scholar
POULIN, R. (1992). Toxic pollution and parasitism in freshwater fish. Parasitology Research 8, 5861.CrossRefGoogle Scholar
RAFFRAY, M., McCARTHY, D., SNOWDEN, R. T. & COHEN, G. M. (1993). Apoptosis as a mechanism of tributyltin cytotoxicity to thymocytes: relationship of apoptotic markers to biochemical and cellular effects. Toxicology and Applied Pharmacology 119, 122130.CrossRefGoogle Scholar
RICHARDS, D. T., HOOLE, D., LEWIS, J. W., EWENS, E. & ARME, C. (1994 a). Ultrastructural observations on the cellular response of carp, Cyprinus carpio l., to eggs of the blood fluke Sanguinicola inermis Plehn, 1905 (Trematoda: Sanguinicolidae). Journal of Fish Diseases 17, 439446.Google Scholar
RICHARDS, D. T., HOOLE, D., LEWIS, J. W., EWENS, E. & ARME, C. (1994 b). Changes in the cellular composition of the spleen and pronephros of carp Cyprinus carpio infected with the blood fluke Sanguinicola inermis (Trematoda: Sanguinicolidae). Diseases of Aquatic Organisms 19, 173179.Google Scholar
RICHARDS, D. T., HOOLE, D., LEWIS, J. W., EWENS, E. & ARME, C. (1996 a). Stimulation of carp Cyprinus carpio lymphocytes by the blood fluke Sanguinicola inermis (Trematoda: Sanguinicolidae). Diseases of Aquatic Organisms 25, 8793.Google Scholar
RICHARDS, D. T., HOOLE, D., LEWIS, J. W., EWENS, E. & ARME, C. (1996 b). In vitro polarization of carp leucocytes in response to the blood fluke Sanguinicola inermis Plehn, 1905 (Trematoda: Sanguinicolidae). Parasitology 112, 509513.Google Scholar
RICHARDS, D. T., HOOLE, D., LEWIS, J. W., EWENS, E. & ARME, C. (1996 c). Adherence of carp leucocytes to adults and cercariae of the blood fluke Sanguinicola inermis. Journal of Helminthology 70, 6367.Google Scholar
RISSO-DE FAVERNEY, C., DEVAUX, A., LAFAURIE, M., GIRARD, J. P., BAILLY, B. & RAHMANI, R. (2001). Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. Aquatic Toxicology 53, 6576.CrossRefGoogle Scholar
ROBERTS, M. L. (1997). The immune response of carp (Cyprinus carpio L.) to the blood fluke Sanguinicola inermis Plehn, 1905 (Trematoda: Sanguinicolidae). Ph.D. Thesis, Keele University, UK.
ROBEY, F. A., TANAKA, T. & LUI, T. (1983). Isolation and characterisation of two major serum proteins from the dogfish, Mutelus canis, C-reactive protein and amyloid P component. Journal of Biological Chemistry 258, 38893894.Google Scholar
RUANE, N. M., NOLAN, D. T., ROTLLAND, J., BALM, P. H. M. & WENDELAAR BONGA, S. E. (1999). Modulation of the response of rainbow trout (Oncorhynchus mykiss Walbaum) to confinement, by an ectoparasite (Argulus foliaceus L.) infestation and cortisol feeding. Fish Physiology and Biochemistry 20, 4351.CrossRefGoogle Scholar
SCHUWERACK, P. M. M., LEWIS, J. W., HOOLE, D. & MORLEY, N. J. (2001). Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 122, 339345.CrossRefGoogle Scholar
SCHUWERACK, P. M. M., LEWIS, J. W. & HOOLE, D. (2003). Cadmium-induced cellular and immunological responses in Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Journal of Helminthology 77, 339348.Google Scholar
SHIM, K. J., JUNG, K. H., CHUNG, M. K. & CHOUNG, S. E. (2002). Development of an in vitro environmental monitoring system by using immune cells. Journal of Health Science 48, 130133.CrossRefGoogle Scholar
SHRIMPTON, J. M. & RANDALL, D. J. (1994). Downregulation of corticosteriod receptors in gills of coho salmon due to stress and cortisol treatment. American Journal of Physiology 267, R432R438.Google Scholar
SINHA, S. & MANDAL, C. (1996). Microheterogeneity of C-reactive protein in sera of fish Lebeo rohita induced by metal pollutants. Biochemical and Biophysical Research Communications 226, 681687.CrossRefGoogle Scholar
SOMMERVILLE, C. & IQBAL, N. A. M. (1991). The process of infection, migration, growth and development of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae) in carp, Cyprinus carpio L. Journal of Fish Diseases 14, 211219.CrossRefGoogle Scholar
STARKE, W. A. & OAKS, J. A. (1999). Hymenolepis diminuta: Praziquantel removal of adult tapeworms is followed by apoptotic down-regulation of mucosal mastocytosis. Experimental Parasitology 92, 171181.CrossRefGoogle Scholar
SURES, B., SCHEEF, G., KLAR, B., KLOAS, W. & TARASCHEWSKI, H. (2002). Interaction between cadmium exposure and infection with the intestinal parasite Moniliformis moniliformis (Acanthocephala) on the stress hormone levels in rats. Environmental Pollution 119, 333340.CrossRefGoogle Scholar
SWEET, L. I., PASSINO-READER, D. R., MEIER, P. G. & OMANN, G. M. (1999). Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response. Biomarkers 4, 237253.Google Scholar
SZALAI, A. J., BLY, J. E. & CLEM, L. W. (1994). Changes in serum concentrations of the channel catfish phosphorylcholine-reactive protein in response to inflammatory agents, low temperature shock and infection by the fungus Saprolegnia sp. Fish and Shellfish Immunology 4, 323336.CrossRefGoogle Scholar
SZALAI, A. J., NORCUM, M. T., BLY, J. E. & CLEM, L. W. (1992). Isolation of an acute phase phosphorylcholine–reactive pentraxins from channel catfish (Ictalurus punctatus). Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology 102, 535543.CrossRefGoogle Scholar
THOMPSON, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 14561462.CrossRefGoogle Scholar
VALTONEN, E. T., HOLMES, J. C. & KOSKIVAARA, M. (1997). Eutrophication, pollution and fragmentation: effects on the parasite communities in roach and perch in four lakes in Central Finland. Parassitologia 39, 233236.Google Scholar
VAN DER SALEM, A. L., NOLAN, D. T., SPANINGS, F. A. T. & WENDELAAR BONGA, S. E. (2000). Effects of infection with the ectoparasite Argulus japonicus (Thiele) and administration of cortisol on cellular proliferation and apoptosis in the epidermis of common carp, Cyprinus carpio L., skin. Journal of Fish Diseases 23, 173184.CrossRefGoogle Scholar
VERBURG-VAN KEMENADE, B. M. L., NOWAK, B., ENGELSMA, M. Y. & WEYTS, F. A. A. (1999). Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish and Shellfish Immunology 9, 405415.CrossRefGoogle Scholar
VETHAAK, A. D. & RHEINALLT, T. (1992). Fish disease as a monitor for marine pollution: the case of the North Sea. Reviews in Fish Biology and Fisheries 2, 132.CrossRefGoogle Scholar
VOLANAKIS, J. E. (2001). Human C-reactive protein: expression, structure, and function. Molecular Immunology 38, 189197.CrossRefGoogle Scholar
VOLANAKIS, J. E. & KAPLAN, M. H. (1971). Specificity of C-reactive protein for choline phosphate residues of pneumoccal c-polysaccharide. Proceedings of the Society for Experimental Biology and Medicine 163, 612614.CrossRefGoogle Scholar
VOLANAKIS, J. E. & KAPLAN, M. H. (1974). Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes. Requirement for human C1q. Journal of Immunology 113, 917.Google Scholar
VOLANAKIS, J. E. & WIRTZ, K. W. (1979). Interaction of C-reactive protein with artificial phosphatidylcholine bilayers. Nature 281, 155157.CrossRefGoogle Scholar
WENDELAAR BONGA, S. E. (1997). The stress response in fish. Physiological Reviews 77, 591625.CrossRefGoogle Scholar
WENDELAAR BONGA, S. E., FLIK, G., BALM, P. H. M. & VAN DER MEIJ, J. C. A. (1990). The ultrastructure of chloride cells in the gills of the teleost Oreochromis mossambiscus during exposure to acidified water. Cell and Tissue Research 259, 575585.CrossRefGoogle Scholar
WENDELAAR BONGA, S. E. & VAN DER MEIJ, C. M. J. (1989). Degeneration and death, by apoptosis and necrosis, of the pavement and chloride cells in the gills of the teleost Oreochromis mossambicus. Cell and Tissue Research 255, 235243.CrossRefGoogle Scholar
WESTER, P. W., VETHAAK, A. D. & VAN MUISWINKEL, W. B. (1994). Fish as biomarkers in immunotoxicity. Toxicology 86, 213232.CrossRefGoogle Scholar
WEYTS, F. A. A., VERBURG-VAN KEMENADE, B. M. L. & FLIK, G. (1998). Characterisation of glucocorticoid receptors in peripheral blood leukocytes of carp, Cyprinus carpio L. General and Comparative Endocrinology 111, 18.Google Scholar
WEYTS, F. A. A., VERBURG-VAN KEMENADE, B. M. L., FLIK, G., LAMBERT, J. G. D. & WENDELAAR BONGA, S. E. (1997). Conservation of apoptosis as an immune regulatory mechanism: Effects of cortisol and cortisone on carp lymphocytes. Brain, Behavior and Immunity 11, 95105.CrossRefGoogle Scholar
WHITE, A., FLETCHER, T. C., PEPYS, M. B. & BALDO, B. A. (1981). The effect of inflammatory agents on CRP and SAP levels in plaice serum. Comparative Biochemistry and Physiology C-Toxicology and Pharmacology 69, 325329.CrossRefGoogle Scholar
WINKELHAKE, J. L. & CHANG, R. J. (1982). Acute phase (C-reactive) protein-like macromolecules from Rainbow trout (Salmo gairdneri). Developmental and Comparative Immunology 6, 481489.CrossRefGoogle Scholar
WINKELHAKE, J. L., VODICNIK, M. J. & TAYLOR, J. L. (1983). Induction in rainbow trout of an acute phase (C-reactive) protein by chemicals of environmental concern. Comparative Biochemistry and Physiology C-Toxicology and Pharmacology 74, 5558.CrossRefGoogle Scholar
XIANG, L.-X., SHAO, J.-Z. & MENG, Z. (2001). Apoptosis induction in fish cells under stress of six heavy metal ions. Progress in Biochemistry and Biophysics 28, 866869.Google Scholar
ZELIKOFF, J. T., CARLSON, E., LI, Y., RAYMOND, A., DUFFY, J. R., BEAMAN, J. R. & ANDERSON, M. (2002). Immunotoxicity biomarkers in fish: Development, validation and application for field studies and risk assessment. Human and Ecological Risk Assessment 8, 253263.CrossRefGoogle Scholar