Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:00:36.594Z Has data issue: false hasContentIssue false

Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei

Published online by Cambridge University Press:  05 July 2010

FEDERICA GIBELLINI
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
SIMON A. YOUNG
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
LOUISE MAJOR
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
HELEN DENTON
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
ALISON LILLEY
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
TERRY K. SMITH*
Affiliation:
Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, U.K.
*
*Corresponding author: Tel: (0)1334-463412; E-mail: tks1@st-andrews.ac.uk

Summary

The biological membranes of Trypanosoma brucei contain a complex array of phospholipids that are synthesized de novo from precursors obtained either directly from the host, or as catabolised endocytosed lipids. This paper describes the use of nanoflow electrospray tandem mass spectrometry and high resolution mass spectrometry in both positive and negative ion modes, allowing the identification of ~500 individual molecular phospholipids species from total lipid extracts of cultured bloodstream and procyclic form T. brucei. Various molecular species of all of the major subclasses of glycerophospholipids were identified including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol as well as phosphatidic acid, phosphatidylglycerol and cardolipin, and the sphingolipids sphingomyelin, inositol phosphoceramide and ethanolamine phosphoceramide. The lipidomic data obtained in this study will aid future biochemical phenotyping of either genetically or chemically manipulated commonly used bloodstream and procyclic strains of Trypanosoma brucei. Hopefully this will allow a greater understanding of the bizarre world of lipids in this important human pathogen.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bertello, L., Goncalvez, M. F., Colli, W. and de Lederkremer, R. M. (1995). Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms. Biochemical Journal 310, 255261.CrossRefGoogle ScholarPubMed
Bligh, E. G. and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.CrossRefGoogle ScholarPubMed
Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T. and Lehmann, W. D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National Academy of Sciences, USA 94, 23392344.CrossRefGoogle ScholarPubMed
Buxbaum, L. U., Milne, K. G., Werbovetz, K. A. and Englund, P. T. (1996). Myristate exchange on the Trypanosoma brucei variant surface glycoprotein. Proceedings of the National Academy of Sciences, USA 93, 11781183.CrossRefGoogle ScholarPubMed
Buxbaum, L. U., Raper, J., Opperdoes, F. R. and Englund, P. T. (1994). Myristate exchange. A second glycosyl phosphatidylinositol myristoylation reaction in African trypanosomes. Journal of Biological Chemistry 269, 3021230220.CrossRefGoogle ScholarPubMed
Carman, G. M. and Han, G. S. (2009). Regulation of phospholipid synthesis in yeast. Journal of Lipid Research 50S, S69S73.CrossRefGoogle Scholar
Chilton, F. H. 3rd and Murphy, R. C. (1986). Fast atom bombardment analysis of arachidonic acid-containing phosphatidylcholine molecular species. Biomedical and Environmental Mass Spectrometry 13, 7176.CrossRefGoogle ScholarPubMed
Denny, P. W., Goulding, D., Ferguson, M. A. and Smith, D. F. (2004). Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity. Molecular Microbiology 52, 313327.CrossRefGoogle ScholarPubMed
Dixon, H., Ginger, C. D. and Williamson, J. (1971). The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comparative Biochemistry and Physiology Part B 39, 247266.CrossRefGoogle ScholarPubMed
Dixon, H. and Williamson, J. (1970). The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. Comparative Biochemistry and Physiology 33, 111128.CrossRefGoogle ScholarPubMed
Dowhan, W. (1997). Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annual Reviews of Biochemistry 66, 199232.CrossRefGoogle ScholarPubMed
Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M. and Bratton, D. L. (2001). Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Journal of Biological Chemistry 276, 10711077.CrossRefGoogle ScholarPubMed
Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H. Jr., Murphy, R. C., Raetz, C. R., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., Van Nieuwenhze, M. S., White, S. H., Witztum, J. L. and Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research 46, 839861.CrossRefGoogle ScholarPubMed
Fridberg, A., Olsen, C. L., Nakayasu, E. S., Tyler, K. M., Almeida, I. C. and Engman, D. M. (2008). Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. Journal of Cell Science 121, 522535.CrossRefGoogle ScholarPubMed
Gibellini, F., Hunter, W. N. and Smith, T. K. (2008). Biochemical characterisation of the initial steps of the Kennedy pathway in Trypanosoma brucei – the ethanolamine and choline kinases. Biochemical Journal 415, 135144.CrossRefGoogle ScholarPubMed
Gibellini, F., Hunter, W. N. and Smith, T. K. (2009). The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Molecular Microbiology 73, 826843.CrossRefGoogle ScholarPubMed
Gibellini, F. and Smith, T. K. (2010). The Kennedy Pathway - de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life (in press). doi:10.1002/ivb.337CrossRefGoogle ScholarPubMed
Godfrey, D. G. (1967). Phospholipids of Trypanosoma lewisi, T. vivax, T. congolense, and T. brucei. Experimental Parasitology 20, 106118.CrossRefGoogle ScholarPubMed
Güler, J. L., Kriegová, E., Smith, T. K., Luke, J. and Englund, P. T. (2008). Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Molecular Microbiology 67, 11251142.CrossRefGoogle ScholarPubMed
Güther, M. L. S., Lee, S., Tetley, L., Acosta-Serrano, A. and Ferguson, M. A. J. (2006). GPI anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are non-essential for growth, are required for colonization of the tsetse fly and are not the only components of the surface coat. Molecular Biology of the Cell 17, 52655274.CrossRefGoogle Scholar
Ishii, I., Fukushima, N., Ye, X. and Chun, J. (2004). Lysophospholipid receptors: signaling and biology. Annual Review of Biochemistry 73, 321354.CrossRefGoogle ScholarPubMed
James, S. R. and Downes, C. P. (1997). Structural and mechanistic features of phospholipases C: effectors of inositol phospholipid-mediated signal transduction. Cell Signal 9, 329336.CrossRefGoogle ScholarPubMed
Kabani, S., Fenn, K., Ross, A., Ivens, A., Smith, T. K., Ghazal, P. and Matthews, K. (2009). Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10, 427441.CrossRefGoogle ScholarPubMed
Kaneshiro, E. S., Jayasimhulu, K. and Lester, R. L. (1986). Characterization of inositol lipids from Leishmania donovani promastigotes: identification of an inostiol sphingophospholipid. Journal of Lipid Research 27, 12941303.CrossRefGoogle Scholar
Kanfer, J. and Kennedy, E. P. (1963). Metabolism and function of bacterial lipids. Journal of Biological Chemistry 238, 29192922.CrossRefGoogle ScholarPubMed
Kennedy, E. P. and Weiss, S. B. (1956). The function of cytidine coenzymes in the biosynthesis of phospholipids. Journal of Biological Chemistry 222, 193214.CrossRefGoogle Scholar
Kerwin, J. L., Tuininga, A. R. and Ericsson, L. H. (1994). Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. Journal of Lipid Research 35, 11021114.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Johnson, J. R., Ahiboh, H., Chung, D.-W. D., Prudhomme, J. and Plouffe, D. (2008). A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum. BMC Genomics 9, article no. 513.CrossRefGoogle ScholarPubMed
Martin, K. L. and Smith, T. K. (2006 a). Phosphatidylinositol synthesis is essential in bloodstream form Trypanosoma brucei. Biochemical Journal 396, 287295.CrossRefGoogle ScholarPubMed
Martin, K. L. and Smith, T. K. (2006 b). The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Molecular Microbiology 61, 89105.CrossRefGoogle Scholar
Menon, A. K., Eppingerl, M., Mayor, S. and Schwarz, R. (1993). Phosphatidylethanolamine is the donor of the phosphoethanolamine group in trypanosome glycosyl-phosphatidylinositol. EMBO Journal 12, 19071914.CrossRefGoogle Scholar
Michels, P. A., Hannaert, V. and Bringaud, F. (2000). Metabolic aspects of glycosomes in trypanosomatidae – new data and views. Parasitology Today 16, 482489.CrossRefGoogle ScholarPubMed
Milna, J. G., Pan, S. Y., Wansadhipathi, N. K., Bruce, C. R., Shams-Eldin, H., Schwarz, R. T., Steel, P. G. and Denny, P. W. (2009). The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Molecular and Biochemical Parasitology 168, 1623.Google Scholar
Overath, P. and Engstler, M. (2004). Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Molecular Microbiology 53, 735744.CrossRefGoogle ScholarPubMed
Patnaik, P. K., Field, M. C., Menon, A. K., Cross, G. A., Yee, M. C. and Butikofer, P. (1993). Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Molecular and Biochemical Parasitology 58, 97105.CrossRefGoogle ScholarPubMed
Pessi, G., Choi, J. Y., Reynolds, J. M., Voelker, D. R. and Mamoun, C. B. (2005). In vivo evidence for the specificity of Plasmodium falciparum phosphoethanolamine methyltransferase and its coupling to the Kennedy pathway. Journal of Biological Chemistry 280, 1246112466.CrossRefGoogle Scholar
Richmond, G. S. and Smith, T. K. (2007 a). The role and characterization of phospholipase A1 in mediating lysophosphatidylcholine synthesis in Trypanosoma brucei. Biochemical Journal 405, 319329.CrossRefGoogle ScholarPubMed
Richmond, G. S. and Smith, T. K. (2007 b). A novel phospholipase from Trypanosoma brucei. Molecular Microbiology 63, 10781095.CrossRefGoogle ScholarPubMed
Rifkin, M. R., Strobos, C. A. M. and Fairlamb, A. H. (1995). Specificity of ethanolamine transport and its further metabolism in Trypanosoma brucei. Journal of Biological Chemistry 270, 1616016166.CrossRefGoogle ScholarPubMed
Signorell, A., Rauch, M., Jelk, J., Ferguson, M. A. J. and Bütikofer, P. (2008) Phosphatidylethanolamine in Trypanosoma brucei is organized in two separate pools and is synthesized exclusively by the Kennedy Pathway. Journal of Biological Chemistry 283, 2363623644.CrossRefGoogle ScholarPubMed
Six, D. A. and Dennis, E. A. (2000). The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochimica et Biophysica Acta 1488, 119.CrossRefGoogle ScholarPubMed
Smith, J. D. (1993). Phospholipid biosynthesis in protozoa. Progress in Lipid Research 32, 4760.CrossRefGoogle ScholarPubMed
Smith, T. K. and Bütikofer, P. (2010). Phospholipid biosynthesis in Trypansoma brucei. Molecular Biochemical Parasitology (in press). doi:10.1016/j.molbiopara.2010.04.01Google Scholar
Sutterwala, S. S., Creswell, C. H., Sanyal, S., Menon, A. K. and Bangs, J. D. (2007). De novo sphingolipid synthesis is essential for viability, but not transport of glycosylphosphatidylinositol-anchored proteins in African trypanosomes. Eukaryotic Cell 6, 454464.CrossRefGoogle Scholar
Sutterwala, S. S., Hsu, F. F., Sevova, E. S., Schwartz, K. J., Zhang, K., Key, P., Turk, J., Beverley, S. M. and Bangs, J. D. (2008). Developmentally regulated sphingolipid synthesis in African trypanosomes. Molecular Microbiology 70, 281296.CrossRefGoogle ScholarPubMed
Uhrig, M. L., Couto, A. S., Colli, W. and de Lederkremer, R. M. (1996). Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms. Biochimica et Biophysica Acta 1300, 233239.CrossRefGoogle ScholarPubMed
Urbina, A. J. (2006). Mechanisms of action of lysophospholipid analogues against trypanosomatid parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 100, S9S16.CrossRefGoogle ScholarPubMed
van Hellemond, J. J. and Tielens, A. G. (2006). Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Letters 580, 55525558.CrossRefGoogle ScholarPubMed
Vance, J. E. (2008). Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. Journal of Lipid Research 49, 13771387.CrossRefGoogle ScholarPubMed
Venkatesan, S. and Ormerod, W. E. (1976). Lipid content of the slender and stumpy forms of Trypanosoma brucei rhodesiense: a comparative study. Comparative Biochemistry and Physiology Part B 53, 481487.CrossRefGoogle ScholarPubMed
Vial, H. J., Eldin, P., Tielens, A. G. and van Hellemond, J. J. (2003). Phospholipids in parasitic protozoa. Molecular and Biochemical Parasitology 126, 143154.CrossRefGoogle ScholarPubMed
Voncken, F., van Hellemond, J. J., Pfisterer, I., Maier, A., Hillmer, S. and Clayton, C. (2003). Depletion of GIM5 causes cellular fragility, a decreased glycosome number, and reduced levels of ether-linked phospholipids in trypanosomes. Journal of Biological Chemistry 278, 3529935310.CrossRefGoogle ScholarPubMed
Walkey, C. J., Yu, L., Agellon, L. B. and Vance, D. E. (1998). Biochemical and evolutionary significance of phospholipid methylation. Journal of Biological Chemistry 273, 2704327046.CrossRefGoogle ScholarPubMed
Wirtz, E., Leal, S., Ochatt, C. and Cross, G. A. (1999). A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Molecular and Biochemical Parasitology 99, 89101.CrossRefGoogle ScholarPubMed
Zachowski, A. (1993). Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochemical Journal 294, 114.CrossRefGoogle ScholarPubMed
Zhang, K., Pompey, J. M., Hsu, F.-F., Key, P., Bandahuvula, P. and Saba, J. D. (2007). Redirection of sphingolipid metabolism towards de novo synthesis of ethanolamine in Leishmania. EMBO Journal 26, 10941104.CrossRefGoogle Scholar
Zufferey, R., Allen, S., Barron, T., Sullivan, D. R., Denny, P. W., Almeida, I. C., Smith, D. F., Turco, S. J., Ferguson, M. A. and Beverley, S. M. (2003). Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. Journal of Biological Chemistry 278, 4470844718.CrossRefGoogle ScholarPubMed