Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T04:56:47.191Z Has data issue: false hasContentIssue false

Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle

Published online by Cambridge University Press:  12 February 2007

C. BOYARD
Affiliation:
INRA (Institut National de la Recherche Agronomique), UR346 Epidémiologie Animale, F-63122 Saint Genès Champanelle, France
J. BARNOUIN*
Affiliation:
INRA (Institut National de la Recherche Agronomique), UR346 Epidémiologie Animale, F-63122 Saint Genès Champanelle, France
P. GASQUI
Affiliation:
INRA (Institut National de la Recherche Agronomique), UR346 Epidémiologie Animale, F-63122 Saint Genès Champanelle, France
G. VOURC'H
Affiliation:
INRA (Institut National de la Recherche Agronomique), UR346 Epidémiologie Animale, F-63122 Saint Genès Champanelle, France
*
*Corresponding author: INRA, UR346 Epidémiologie Animale, F-63122 Saint Genès Champanelle, France. Tel: +33 (0) 4 73 62 41 48. Fax: +33 (0) 4 73 62 45 48. E-mail: barnouin@clermont.inra.fr

Summary

Although Ixodes ricinus ticks are mainly associated with woodland, they are also present in open habitat such as pastures. The distribution of nymphal I. ricinus was monitored by drag sampling the vegetation in May–June 2003 on 61 grazed permanent pastures for cattle located in central France. After selecting explanatory variables from among a set of 155, tick abundance was modelled on the perimeter of the pasture using a negative binomial model that took into account data overdispersion. An abundant tree layer at the perimeter of the pasture associated with a high humidity before sampling greatly enhanced the average number of captured I. ricinus nymphs. The presence of apple or cherry trees around the pasture perimeter, the presence of trees or bushes at the pasture edge, woodland around the pasture and a high number of I. ricinus nymphs in the nearest woodland to the pasture were also favourable to nymph abundance in the pasture. The study highlighted that woodland vegetation associated with humidity and the presence of attractive foraging areas for tick hosts around the pasture played a key role in the abundance of I. ricinus. Finally, the results raised the question of whether and how transfer of ticks between woodland and grazed pastures occurs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aeschlimann, A. (1981). The role of hosts and environment in the natural dissemination of ticks. Studies on a Swiss population of Ixodes ricinus L., 1758. Review of Advances in Parasitology, Warszawa 859869.Google Scholar
Anderson, R., Duncan, P. and Linnell, J. D. C. (1998). The European Roe Deer: the Biology of Success. Scandinavian University Press, Oxford, UK.Google Scholar
Arzouni, J.-P. (1990). Une enquête séro-épidémiologique dans le Puy-de-Dôme, à propos de trois maladies transmissibles par les tiques: la maladie de Lyme, la fièvre boutonneuse méditerranéenne, la fièvre Q. Doctorat en médecine. Université Clermont-Ferrand I.Google Scholar
Breslow, N. E. (1984). Extra-Poisson variation in log-linear models. Applied Statistics 33, 3844.CrossRefGoogle Scholar
Carroll, M. M., Ginsberg, H. S., Hyland, K. E. and Hu, R. (1992). Distribution of Ixodes dammini (Acari: Ixodidae) in residential lawns on Prudence Island, Rhode Island. Journal of Medical Entomology 29, 10521055.Google Scholar
Eisen, L. and Lane, R. S. (2002), Vectors of Borrelia burgdorferi sensu lato. In Lyme Borreliosis: Biology, Epidemiology and Control (ed. Gray, J. S., Kahl, S. O., Lane, R. S. and Stanek, G.), pp. 91115. CAB International, Trowbridge, UK.CrossRefGoogle Scholar
Ferquel, E., Garnier, M., Marie, J., Bernede-Bauduin, C., Baranton, G., Perez-Eid, C. and Postic, D. (2006). Prevalence of Borrelia burgdorferi sensu lato and Anaplasmataceae members in Ixodes ricinus ticks in Alsace, a focus of Lyme borreliosis endemicity in France. Applied and Environmental Microbiology 72, 30743078.CrossRefGoogle ScholarPubMed
Gilot, B., Pautou, G. and Moncada, E. (1975). L'analyse de la végétation appliquée à la détection des populations de tiques exophiles dans le Sud-Est de la France: l'exemple d'Ixodes ricinus (Linné 1798) (Acarina, Ixodoidea). Acta Tropica Separatum 32, 340347.Google Scholar
Gray, J. S. (1985). A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Experimental and Applied Acarology 1, 3544. doi: 10.1007/BF01262198.CrossRefGoogle ScholarPubMed
Gray, J. S. (1998). Review: The ecology of ticks transmitting Lyme borreliosis. Experimental and Applied Acarology 22, 249258.CrossRefGoogle Scholar
Gray, J. S. (2002). Biology of Ixodes species ticks in relation to tick-borne zoonoses. Wien Klinische Wochenschrift 114, 473478.Google ScholarPubMed
Gray, J. S., Kahl, O., Janetzki, C., Stein, J. and Guy, E. (1995). The spatial-distribution of Borrelia burgdorferi infected Ixodes ricinus in the Connemara region of county Galway, Ireland. Experimental and Applied Acarology 19, 163172.CrossRefGoogle ScholarPubMed
Humair, P. F., Rais, O. and Gern, L. (1999). Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118, 3342.CrossRefGoogle ScholarPubMed
Jouda, F., Perret, J. L. and Gern, L. (2004). Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. Journal of Medical Entomology 41, 162169.CrossRefGoogle ScholarPubMed
Le Louarn, H. and Quéré, J.-P. (2003). Les Rongeurs de France: Faunistique et Biologie, 2e Edn. INRA, Paris, France.Google Scholar
L'Hostis, M., Chauvin, A., Valentin, A., Marchand, A. and Gorenflot, A. (1995 a). Large scale survey of bovine babesiosis due to Babesia divergens in France. The Veterinary Record 14, 3638.CrossRefGoogle Scholar
L'Hostis, M., Dumon, H., Dorchies, B., Boisdron, F. and Gorenflot, A. (1995 a). Seasonal incidence and ecology of the tick Ixodes ricinus (Acari: Ixodidae) on grazing pastures in Western France. Experimental and Applied Acarology 19, 211220.CrossRefGoogle ScholarPubMed
L'Hostis, M. and Seegers, H. (2002). Tick-borne parasitic diseases in cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Veterinary Research 33, 599611.CrossRefGoogle Scholar
MacLeod, J. (1932). The bionomics of Ixodes ricinus L., the “sheep tick” of Scotland. Parasitology 24, 382400.CrossRefGoogle Scholar
MacLeod, J. (1935). Ixodes ricinus in relation to its physical environment. II. Factors governing survival and activity. Parasitology 27, 123144.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J. A. (1991). Generalized Linear Models, 2nd Edn. Cambridge University Press, Cambridge, UK.Google Scholar
Mémeteau, S., Seegers, H., Jolivet, F. and L'Hostis, M. (1998). Assessment of the risk of infestation of pastures by Ixodes ricinus due to their phyto-ecological characteristics. Veterinary Research 29, 487496. ISSN: 0928-4249.Google ScholarPubMed
Milne, M. A. (1946). The ecology of the sheep tick, Ixodes ricinus L. Distribution of the tick on hill grazing pasture. Parasitology 37, 7581.Google Scholar
Parola, P. and Raoult, D. (2001). Review article: ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clinical Infectious Diseases 32, 897928.CrossRefGoogle ScholarPubMed
Perret, J.-L., Guerin, P. M., Diehl, P. A., Vlimant, M. and Gern, L. (2003). Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. The Journal of Experimental Biology 206, 18091815.CrossRefGoogle ScholarPubMed
Perret, J.-L., Guigoz, E., Rais, O. and Gern, L. (2000). Influence of saturation deficit and temperature on Ixodes ricinus tick quest activity in a Lyme borreliosis-endemic area (Switzerland). Parasitology Research 86, 554557.CrossRefGoogle Scholar
Perret, J.-L., Rais, O. and Gern, L. (2004). Influence of climate in the proportion of Ixodes ricinus nymphs and adults questing in a tick population. Entomological Society of America 41, 361365.Google Scholar
Putman, R. J. and Moore, N. P. (1998). Impact of deer in lowland Britain on agriculture, forestry and conservation habitats. Mammal Review 28, 141164.CrossRefGoogle Scholar
R Development Core Team (2005). R: a Language and Environment for Statistical Computing, Version 2.2.1. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Randolph, S. E. (2001). The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philosophical Transactions: Biological Sciences 356, 10451056.CrossRefGoogle ScholarPubMed
Randolph, S. E., Green, R. M., Hoodless, A. N. and Peacey, M. F. (2002). An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. International Journal for Parasitology 32, 979989.CrossRefGoogle ScholarPubMed
Scrucca, L. (2003). Dispmod: Dispersion Models, R Package Version 1.0. Online: Online: http://-cran.r-project.org, last access: 22/01/2007.Google Scholar
Shaw, D. J. and Dobson, A. P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111 (Suppl.), S111S133.CrossRefGoogle ScholarPubMed
Stevens, J. and Bont, A. F. D. (1980). Choice by starlings (Sturnus vulgaris L.) among different cherry cultivars. Agricultura 28, 421436.Google Scholar
Tattersall, F. H., Macdonald, D. W., Hart, B. J., Manley, W. J. and Feber, R. E. (2001). Habitat use by wood mice (Apodemus sylvaticus) in a changeable arable landscape. Journal of Zoology (London) 255, 487494.Google Scholar
Vassallo, M., Pichon, B., Cabaret, J., Figureau, C. and Pérez-Eid, C. (2000). Methodology for sampling questing nymphs of Ixodes ricinus (Acari: Ixodidae), the principal vector of Lyme disease in Europe. Entomological Society of America 37, 335339.Google Scholar
Vourc'h, G., De Garine-Wichatitsky, M., Labbé, A., Rosolowski, D., Martin, J.-L. and Fritz, H. (2002). Monoterpene effect on feeding choice by deer. Journal of Chemical Ecology 28, 24112427.CrossRefGoogle ScholarPubMed
Walker, A. R. (2001). Age structure of a population of Ixodes ricinus (Acari: Ixodidae) in relation to its seasonal questing. Bulletin of Entomological Research 91, 6978. doi: 10.1079/BER200065.CrossRefGoogle ScholarPubMed
Walker, A. R., Alberdi, M. P., Urquhart, K. A. and Rose, H. (2001). Risk factors in habitats of the tick Ixodes ricinus influencing human exposure to Ehrlichia phagocytophila bacteria. Medical and Veterinary Entomology 15, 4049.CrossRefGoogle ScholarPubMed