Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:56:19.921Z Has data issue: false hasContentIssue false

Molecular characterization of Babesia and Cytauxzoon species in wild South-African meerkats

Published online by Cambridge University Press:  06 November 2014

SARAH LECLAIRE*
Affiliation:
Department of zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), 118 route de Narbonne, 31062 Toulouse, France Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier, France Kalahari Meerkat Project, Kuruman River Reserve, 8467 Van Zylsrus, Northern Cape, South Africa
SANDIE MENARD
Affiliation:
Centre de Physiopathologie de Toulouse-Purpan, INSERM UMR1043–CNRS UMR5282 – Université de Toulouse III, BP 3028, 31024 Toulouse cedex 3, France
ANTOINE BERRY
Affiliation:
Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire Purpan, 31059 Toulouse, France Centre de Physiopathologie de Toulouse-Purpan, INSERM UMR1043–CNRS UMR5282 – Université de Toulouse III, BP 3028, 31024 Toulouse cedex 3, France
*
*Corresponding author. CEFE-CNRS, 1919 Rte de Mende, 34293 Montpellier cedex 5, France. E-mail: sarah.leclaire@free.fr

Summary

Piroplasms, including Babesia, Cytauxzoon and Theileria species, frequently infect domestic and wild mammals. At present, there is no information on the occurrence and molecular identity of these tick-borne blood parasites in the meerkat, one of South Africa's most endearing wildlife celebrities. Meerkats live in territorial groups, which may occur on ranchland in close proximity to humans, pets and livestock. Blood collected from 46 healthy meerkats living in the South-African Kalahari desert was screened by microscopy and molecular methods, using PCR and DNA sequencing of 18S rRNA and ITS1 genes. We found that meerkats were infected by 2 species: one species related to Babesia sp. and one species related to Cytauxzoon sp. Ninety one percent of the meerkats were infected by the Cytauxzoon and/or the Babesia species. Co-infection occurred in 46% of meerkats. The pathogenicity and vectors of these two piroplasm species remains to be determined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Bandyopadhyay, S. and Ray, R. (1985). Babesia bengalensis sp (apicomplexa, babesiidae), a new piroplasmid from a common Indian mongoose, Herpestes edwardsi (Geoffroy). Acta Protozoologica 24, 147152.Google Scholar
Blaschitz, M., Narodoslavsky-Gfoeller, M., Kanzler, M., Stanek, G. and Walochnik, J. (2008). Babesia species occurring in Austrian Ixodes ricinus ticks. Applied and Environmental Microbiology 74, 48414846.CrossRefGoogle ScholarPubMed
Bosman, A.-M., Oosthuizen, M. C., Peirce, M. A., Venter, E. H. and Penzhorn, B. L. (2010). Babesia lengau sp. nov., a novel Babesia species in cheetah (Acinonyx jubatus, Schreber, 1775) populations in South Africa. Journal of Clinical Microbiology 48, 27032708.Google Scholar
Bostrom, B., Wolf, C., Greene, C. and Peterson, D. (2008). Sequence conservation in the rRNA first internal transcribed spacer region of Babesia gibsoni genotype Asia isolates. Veterinary Parasitology 152, 152157.CrossRefGoogle ScholarPubMed
Dawood, K. E., Morgan, J. A. T., Busfield, F., Srivastava, M., Fletcher, T. I., Sambono, J., Jackson, L. A., Venus, B., Philbey, A. W. and Lew-Tabor, A. E. (2013). Observation of a novel Babesia spp. in Eastern Grey Kangaroos (Macropus giganteus) in Australia. International Journal for Parasitology: Parasites and Wildlife 2, 5461.Google Scholar
Dennig, H. (1964). The isolation of Babesia species from wild animals. In Proceedings of the First International Congress of Parasitology, pp. 2426. Rome.Google Scholar
Grewal, M. S. (1957). Two new piroplasms, Babesia (Babesiella) heischi and Babesia (Babesia) hoarei from Peter's pigmy mongoose, Helogale undulata rufula (demonstrated by Professor Garnham). Transactions of the Royal Society of Tropical Medicine and Hygiene 51, 290291.Google Scholar
Gubbels, J. M., De Vos, A. P., Van der Weide, M., Viseras, J., Schouls, L. M., De Vries, E. and Jongejan, F. (1999). Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology 37, 17821789.CrossRefGoogle ScholarPubMed
Homer, M. J., Aguilar-Delfin, I., Telford, S. R., Krause, P. J. and Persing, D. H. (2000). Babesiosis. Clinical Microbiology Reviews 13, 451469.Google Scholar
Hoogstraal, H. and El Kammah, K. M. (1974). Notes on African Haemahysalis ticks. XII. H. (Rhipistoma) zumpti sp. n. a parasite of small carnivores and squirrels in southern Africa (ixodoidea: ixodidae). The Journal of Parasitology 60, 188197.CrossRefGoogle Scholar
Horak, I. G., Chaparro, F., Beaucournu, J. and Louw, J. (1999). Parasites of domestic and wild animals in South Africa. XXXVI. Arthropod parasites of yellow mongooses, Cynictis penicillata (G. Cuvier, 1829). Onderstepoort . Journal of Veterinary Research 66, 3338.Google Scholar
Horak, I. G., Braack, L. E. O., Fourie, L. J. and Walker, J. B. (2000). Parasites of domestic and wild animals in South Africa. XXXVIII. Ixodid ticks collected from 23 wild carnivore species. Onderstepoort Journal of Veterinary Research 67, 239250.Google ScholarPubMed
Jordan, N. R., Cherry, M. I. and Manser, M. B. (2007). Latrine distribution and patterns of use by wild meerkats: implications for territory and mate defence. Animal Behaviour 73, 613622.CrossRefGoogle Scholar
Lynch, C. D., (1980). Ecology of the suricate, Suricata suricatta and yellow mongoose, Cynictis penicillata with special reference to their reproduction. In Memoirs van die Nasionale Museum, pp. 145. Bloemfontein, South Africa.Google Scholar
Medlin, L., Elwood, H. J., Stickel, S. and Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491499.Google Scholar
Nijhof, A., Pillay, V., Steyl, J., Prozesky, L., Stoltsz, W., Lawrence, J., Penzhorn, B. and Jongejan, F. (2005). Molecular characterization of Theileria species associated with mortality in four species of African antelopes. Journal of Clinical Microbiology 43, 59075911.Google Scholar
Nijhof, A. M., Penzhorn, B. L., Lynen, G., Mollel, J. O., Morkel, P., Bekker, C. P. and Jongejan, F. (2003). Babesia bicornis sp. nov. and Theileria bicornis sp. nov.: tick-borne parasites associated with mortality in the black rhinoceros (Diceros bicornis). Journal of Clinical Microbiology 41, 22492254.Google Scholar
Peixoto, P., Soares, C., Scofield, A., Santiago, C., Franca, T. and Barros, S. (2007). Fatal cytauxzoonosis in captive-reared lions in Brazil. Veterinary Parasitology 145, 383387.CrossRefGoogle ScholarPubMed
Penzhorn, B. L. (2006). Babesiosis of wild carnivores and ungulates. Veterinary Parasitology 138, 1121.Google Scholar
Penzhorn, B. L. and Chaparro, F. (1994). Prevalence of Babesia cynicti infection in 3 populations of yellow mongooses (Cynicti penicillata) in the Transvaal, South-Africa. Journal of Wildlife Diseases 30, 557559.CrossRefGoogle Scholar
Ristic, M., (1988). Babesiosis of Domestic Animals and Man. CRC Press, Inc, Boca Raton, FL.Google Scholar
Schnittger, L., Rodriguez, A. E., Florin-Christensen, M. and Morrison, D. A. (2012). Babesia: a world emerging. Infection, Genetics and Evolution 12, 17881809.Google Scholar
Shock, B. C., Murphy, S. M., Patton, L. L., Shock, P. M., Olfenbuttel, C., Beringer, J., Prange, S., Grove, D. M., Peek, M. and Butfiloski, J. W. (2011). Distribution and prevalence of Cytauxzoon felis in bobcats (Lynx rufus), the natural reservoir, and other wild felids in thirteen states. Veterinary Parasitology 175, 325330.CrossRefGoogle ScholarPubMed
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
van Staaden, M., (1994). Suricata suricatta. Mammalian Species 483, 18.CrossRefGoogle Scholar
Wagner, J. (1976). A fatal cytauxzoonosis-like disease in cats. Journal of the American Veterinary Medical Association 168, 585588.Google ScholarPubMed
Yabsley, M. J. and Shock, B. C. (2013). Natural history of zoonotic Babesia: role of wildlife reservoirs. International Journal for Parasitology: Parasites and Wildlife 2, 1831.Google Scholar
Yabsley, M. J., Davidson, W. R., Stallknecht, D. E., Varela, A. S., Swift, P. K., Devos, J. C. and Dubay, S. A. (2005) Evidence of tick-borne organisms in mule deer (Odocoileus hemionus) from the western United States. Vector-Borne and Zoonotic Diseases 5, 351362.Google Scholar
Zintl, A., Mulcahy, G., Skerrett, H. E., Taylor, S. M. and Gray, J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clinical Microbiology Reviews 16, 622636.Google Scholar