Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T06:08:47.836Z Has data issue: false hasContentIssue false

Monosaccharide composition of the surface glycoprotein antigens of Trypanosoma brucei

Published online by Cambridge University Press:  06 April 2009

B. A. Allsopp
Affiliation:
East African Trypanosomiasis Research Organization, Tororo, Uganda
A. R. Njogu
Affiliation:
East African Trypanosomiasis Research Organization, Tororo, Uganda

Extract

Evidence has been adduced that the surface antigens of Trypanosoma brucei subgroup are a group of glycoproteins having D-galactose, D-mannose and D-glucosamine as monosaccharide components.

There was considerable variation in the number of antigen components, and their relative amounts, as revealed by isoelectric focusing on polyacrylamide gel. The relevance of these variations to the adaptation theory of antigenic variation in trypanosomes is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, B. A., Njogu, A. R. & Humphryes, K. C. (1971). Nature and location of Trypanosoma brucei subgroup exoantigen and its relationship to 4S antigen. Experimental Parasitology 29, 271–84.CrossRefGoogle ScholarPubMed
Bitter, T. & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical Biochemistry 4, 330–4.CrossRefGoogle ScholarPubMed
Cantrell, W. (1958). Mutation rate and antigenic variation in Trypanosoma equiperdum. Journal of Infectious Diseases 103, 263–71.Google Scholar
Crumpton, M. J. (1959). Identification of amino sugars. Biochemical Journal 72, 479–86.CrossRefGoogle ScholarPubMed
Dische, Z. & Shettles, L. B. (1948). A specific color reaction of methyl pentoses and a spectrophotometric micromethod for their determination. Journal of Biological Chemistry 175, 595603.Google Scholar
Gray, A. R. (1967). Some principles of the immunology of trypanosomiasis. Bulletin of the World Health Organization 37, 117–93.Google Scholar
Humphryes, K. C. (1970 a). The separation of brucei subgroup trypanosomes from rat blood. East African Trypanosomiasis Research Organisation Annual Report for 1969, pp. 32–6.Google Scholar
Humphryes, K. C. (1970 b). Isoelectric focusing of Trypanosoma brucei sub-group antigens in polyacrylamide gel thin layers. A method for resolving and characterising protein-carbo-hydrate complexes of an enzymic and immunological nature. Journal of Chromatography 49, 503–10.Google Scholar
Kligler, I. J. & Olitzki, L. (1936). The antigenic composition of Trypanosoma evansi. Annals of Tropical Medicine and Parasitology 4, 287–91.CrossRefGoogle Scholar
Lanham, S. M. (1968). Separation of trypanosomes from the blood of infected rats and mice by anion exchangers. Nature, London 218, 1273–4.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Taylor, A. E. R. (1972). Some properties of the immunogens (protective antigens) of a single variant of Trypanosoma brucei. Journal of General Microbiology 72, 101–16.CrossRefGoogle ScholarPubMed
Levy, G. A. & McAllen, A. (1959). The N-acetylation and estimation of hexosamines. Biochemical Journal 73, 127–32.Google Scholar
Lewin, S. (1970). Effect of pH placing of sample in isoelectric focusing of proteins. Biochemical Journal 117, 41p.Google Scholar
Lüderitz, O., Staub, A. M. & Westphal, O. (1966). Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriological Reviews 30, 192255.CrossRefGoogle Scholar
Morgan, W. T. J. & Elson, L. A. (1934). A colorimetric method for the determination of N-acetyl glucosamine and N-acetyl chondrosamine. Biochemical Journal 28, 988–95.CrossRefGoogle Scholar
Neuberger, A., Marshall, R. D. & Gottschalk, A. (1966). Some aspects of the chemistry of the component sugars of glycoproteins. In Glycoproteins, Their Composition, Structure and Function, BBA Library, vol. 5 (ed. Gottschalk, A.), pp. 158–89. Amsterdam, London and New York: Elsevier Publishing Co.Google Scholar
Njogu, A. R. (1969). The nature of some precipitinogens of the brucei subgroup trypanosomes. Ph.D. Thesis, London University.Google Scholar
Njogu, A. R. & Humphryes, K. C. (1972). The nature of the 4 S antigens of the brucei subgroup trypanosomes. Experimental Parasitology 31, 178–87.CrossRefGoogle Scholar
Park, J. T. & Johnson, M. J. (1949). A submicro determination of glucose. Journal of Biological Chemistry 181, 149–51.Google Scholar
Reissig, J. L., Strominger, J. L. & Leloir, L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry 217, 959–66.Google Scholar
Roseman, S. & Daffner, J. (1956). Colorimetric method for determination of glucosamine and galactosamine. Analytical Chemistry 28, 1743–6.Google Scholar
Scandurra, R., Cannella, C. & Elli, R. (1969). Use of isoelectric focusing in the purification of l–glutamate-phenyl pyruvate amino transferase. Science Tools 16, 17–9.Google Scholar
Simmons, V. & Humphryes, K. C. (1965). Observations on the electrophoretic separation of trypanosome proteins. East African Trypanosomiasis Research Organization Annual Report for 1963–1964, pp. 42–4.Google Scholar
Sonnet, J. & DeNoyette, J. P. (1971). Gel isoelectric focusing of foetal and adult hemoglobin M Iwate. Science Tools 18, 12–4.Google Scholar
Spiro, R. G. (1959). Studies on the biosynthesis of glucosamine in the intact rat. Journal of Biological Chemistry 234, 742–8.Google Scholar
Spiro, R. G. (1960). Studies on fetuin, a glycoprotein of foetal serum. Journal of Biological Chemistry 235, 2860–9.Google Scholar
Spiro, R. G. (1966). Analysis of sugars found in glycoproteins. In Methods of Enzymology, vol. 8 (ed. Neufeld, E. F. and Ginsburg, V.), pp. 326. London and New York: Academic Press.Google Scholar
Stoffyn, P. J. & Jeanloz, R. W. (1954). Archives of Biochemistry and Biophysics 52, 373. Cited by Spiro (1966), loc. cit.CrossRefGoogle Scholar
Svennerholm, L. (1957). Biochimica et Biophysica Acta 24, 604. Cited by Spiro (1966), loc. cit.CrossRefGoogle Scholar
Trevelyan, W. E., Proctor, D. P. & Harrison, J. S. (1950). Detection of sugars on paper chromatograms. Nature, London 166, 444–5.Google Scholar
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163–93.CrossRefGoogle ScholarPubMed
Vickerman, K. & Luckins, A. G. (1969). Localisation of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature, London 224, 1125–6.CrossRefGoogle ScholarPubMed
Warburg, O. & Christian, W. (1941). Biochemische Zeitschrift 310, 384. Cited by Dawson, R. M. C., Elliott, D. C., Elliott, W. H. and Jones, K. M. (1966). In Data for Biochemical Research, 2nd ed., p. 625. Oxford: Clarendon Press.Google Scholar
Warren, L. (1959). The thiobarbituric acid assay of sialic acids. Journal of Biological Chemistry 234, 1971–5.Google Scholar
Watkins, J. F. (1964). Observations on antigenic variation in a strain of Trypanosoma brucei growing in mice. Journal of Hygiene, London 62, 6980.CrossRefGoogle Scholar
Weitz, B. (1960). The properties of some antigens of Trypanosoma brucei. Journal of General Microbiology 23, 589600.CrossRefGoogle ScholarPubMed
Williamson, J. & Brown, K. N. (1964). The chemical composition of trypanosomes. III. Antigenic constituents of brucei trypanosomes. Experimental Parasitology 15, 4468.Google Scholar
Williamson, J. & Desowitz, R. S. (1961). The chemical composition of trypanosomes. I. Protein, amino acid and sugar analysis. Experimental Parasitology 11, 161–75.CrossRefGoogle ScholarPubMed