Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T13:41:32.940Z Has data issue: false hasContentIssue false

Morphological and histochemical obervations on the ovarian balls of Centrorhynchus corvi (Acanthocephala)

Published online by Cambridge University Press:  06 April 2009

V. R. Parshad
Affiliation:
Department of Zoology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
S. S. Guraya
Affiliation:
Department of Zoology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India

Extract

Unlike in other acanthocephalans, the overian balls of Centrorhynchus corvi are complex and are composed of 24–30 ovarian ball units. Each ovarian ball unit consists of three structural and functional units – the oogonial syncytium, developing oogenetic cells and the supporting syncytium – complementary to the ovarian balls of other acanthocephalans. Three metamorphic stages of the nuclei in the oogonial syncytium are described, depending on the nuclear morphology, chromatin structure and appearance of the nucleolus. Third-stage nuclei bulge out at the periphery of the oogonial syncytium and are surrounded by its cytoplasm and a thin membrane. Ultimately these are separated from the oogonial syncytium to from oogonia containing small amounts of cytoplasmic components derived from the oogonial syncytium. Nuclei of the young oogonia, oognia at the budding stage, and 3rd-stage nuclei of the oogonial syncytium all possess nucleoli and are similar also in their nuclear dimensions and cytochemical affinities. Nuclear resemblances, and cytoplasmic similarities of the oogonia and oogonial syncytium with regard to the presence of lipids, RNA and proteins support the concept of the origin of oogonia from the oogonial syncytium.

The free oogonia divide mitotically in the cellular zone where they undergo a single mitotic division and the resulting oocytes enter the prophase of meiosis. I. The meiotic primary oocytes in contrast to the permeiotic primary oocytes of other acanthoscephalans enter the growth phase which is closely accompanied by the accumulation of various ooplasmic components such as basophilic yolk nucleus which is composed of RNA, proteins, lipoproteins and phospholipids. Histochemical features of the oogonial and supporting syncytium are described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfert, M. & Geschwind, I. I. (1953). A selective staining method for the basic proteins of cell nuclei. Proceedings of the National Academy of Sciences 39, 991–9.CrossRefGoogle ScholarPubMed
Atkinson, K. H. & Byram, J. E. (1976). The structure of the ovarian ball and oogenesis in Moniliformis dubius. Journal of Morphology 148, 391426.CrossRefGoogle Scholar
Baker, J. R. (1946). The histochemical recognition of lipine. Quarterly Journal of Microscopical Sciences 87, 441–70.Google ScholarPubMed
Black, M. M. & Ansley, H. R. (1964). Histone staining with ammoniacal silver. Science 43, 693.CrossRefGoogle Scholar
Bone, L. W. (1974 a). The chromosomes of Neoechinorhynchus cylindratus (Acanthocephala). Journal of Parasitology 60, 731–2.CrossRefGoogle Scholar
Bone, L. W. (1974 b). The chromosomes of Leptorhynchoides thecatus (Acanthocephala). Journal of Parasitology 60, 818.CrossRefGoogle ScholarPubMed
Bullock, W. L. (1969). Morphological features as tools and pitfalls in acanthocephalan systematics. In Problems in Systematics of Parasites (ed. Schmidt, G. D.). Baltimore, Maryland, and Manchester, England: University Park Press.Google Scholar
Busch, H. & Smetana, K. (1970). The Nucleolus. 626 pp. New York and London: Academic Press.Google Scholar
Crompton, D. W. T. & Whitfield, P. J. (1974). Observations on the functional organization of the ovarian balls of Moniliformis and Polymorphus (Acanthocephala). Parasitology 69, 429–43.CrossRefGoogle ScholarPubMed
Foor, W. E. (1968). Zygote formation in Ascaris lumbricoides (Nematoda). Journal of Cell Biology 39, 119–34.CrossRefGoogle ScholarPubMed
Guraya, S. S. (1968). Further morphological and histochemical studies on the yolk nucleus and associated cell components in the developing oocyte of the Indian wall lizard. Journal of Morphology 124, 283–94.Google ScholarPubMed
Guraya, S. S. (1969). Histochemical observations on the developing acanthocephalan oocyte. Acta Embryologiae Experimentalis 1, 147–55.Google Scholar
Guraya, S. S. (1974). Morphology, histochemistry and biochemistry of human oogenesis and ovulation. International Review of Cytology 37, 121–51.CrossRefGoogle ScholarPubMed
Hamann, O. (1891) Monographie der Acanthocephalan (Echinorhynchen). Jenaische Zeitschrift für Naturwissenschaft 25, 113232.Google Scholar
Humason, G. L. (1972). Animal Tissue Technique. 641 pp. San Francisco: W. H. Freeman and Company.Google Scholar
Kaiser, J. E. (1893). Die Acanthocephalan und ihre Entwicklung. Bibliotheca Zoologica 11, Heft 7.Google Scholar
Lillie, R. D. (1965). Histopathologic Technic and Practical Histochemistry. 715 pp. New York, Toronto, Sydney and London: McGraw-Hill Book Company.Google Scholar
Love, R. & Liles, R. H. (1959). Differentiation of nucleoproteins by inactivation of protein bound amino groups and staining with toluidine blue and ammonium molybdate. Journal of Histochemistry and Cyotchemistry 7, 174–81.Google ScholarPubMed
Macgregor, H. (1972). The nucleolus and its genes in amphibian oogenesis. Biological Reviews 47, 177210.CrossRefGoogle ScholarPubMed
Mazia, A., Brewer, P. & Alfert, M. (1953). The cytochemical staining and measurements of protein with mercuric bromophenol blue. Biological Bulletin 104, 5767.CrossRefGoogle Scholar
Mclaren, D. J. (1973). Oogenesis and fertilization in Dipetalonema viteae (Nematoda: Filarioidea). Parasitology 66, 465–72.CrossRefGoogle Scholar
Menzies, D. W. (1966). Staining of small lymphoid nucleoli in paraffin sections by anilineazur B. Stain Technology 41, 165–8.CrossRefGoogle ScholarPubMed
Meyer, A. (1928). Die Furchung nebst Bildung, Reifund und Befruchtung des Gigantorhynchus gigas. Ein Beitrag Zur Morphologie der Acanthocephalan. Zoologische Jahrbucher Anatomie und Ontogenie der Tiers 50, 117218.Google Scholar
Nicholas, W. L. & Hynes, H. B. N. (1963). The embryology of Polymorphus minutus (Acanthocephala). Proceeding of the Zoological Society of London 141, 791801.CrossRefGoogle Scholar
Pearse, A. G. E. (1968). Histochemistry: Theoretical and Applied. 759 pp. London: J. & A. Churchill Ltd.Google Scholar
Robinson, E. S. (1964). Chromosome morphology and behaviour in Macracanthorhynchus hirudinaceus. Journal of Parasitology 50, 694–7.CrossRefGoogle ScholarPubMed
Robinson, E. S. (1965). The chromosome of Moniliformis dubius (Acanthocephala). Journal of Parasitology 51, 430–2.CrossRefGoogle ScholarPubMed
Varma, S. K. & Guraya, S. S. (1974). Histochemical distribution of some hydrolytic enzymes and their functional significance in the ovaries of lizards. Acta Histochemical 49, 2638.Google ScholarPubMed
Vorbrodt, A. (1974). Cytochemistry of nuclear enzymes. In The Cell Nucleus (ed. Busch, H.), pp. 309–44. New York and London: Academic Press.CrossRefGoogle Scholar
Whitfield, P. J. (1973). The egg envelopes of Polymorphus minutus (Acanthocephala). Parasitology 66, 387403.CrossRefGoogle ScholarPubMed