Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T04:45:05.560Z Has data issue: false hasContentIssue false

Partial characterization of 2-β-mercaptoethanol-soluble surface-associated antigens of Onchocerca volvulus

Published online by Cambridge University Press:  06 April 2009

F. Engelbrecht
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 IQP, UK
G. Braun
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 IQP, UK
V. Connor
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 IQP, UK
M. Downham
Affiliation:
MRC Laboratory, PO Box 81, Bo, Sierra Leone
J. A. Whitworth
Affiliation:
MRC Laboratory, PO Box 81, Bo, Sierra Leone
D. W. Taylor
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 IQP, UK

Extract

Antigens were extracted from the epicuticle/cuticle of intact female Onchocerca volvulus using 2% 2-β-mercaptoethanol and 1% SDS. In Western blot analysis a human infection serum selected for its high antibody titre against whole worm homogenates did not recognize any component solubilized by 1% SDS. However, the same serum did bind at least 7 antigens among the material extracted with 2-β-mercaptoethanol. These antigens have apparent molecular weights (Mr) of: 15 000, 18 000, 28 000, 78 000, 98 000, 120 000 and 200 000. In ELISA using this preparation as target antigen, 151 out of 153 human infection sera gave positive results. An Onchocerca-specific IgG1 monoclonal antibody, designated Cam1, recognized the 28 000 Mr antigen, which is the most prominent antigen detected by Western blot analysis using human infection sera. In ELISA, using material affinity-purified with Cam1 as target antigen, 149 out of 153 human infection sera gave a positive IgG response. From a cDNA library three expressing clones were isolated with a rabbit serum raised against 2-β-mercaptoethanol solubilized material. One of these clones was recognized by the monoclonal antibody Cam1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, O., Petit, G. & Diagne, M. (1989). Étude de quelques Litomosoides parasites de rongeurs; conséquences taxonomiques. Annales de Parasitologie Humaine et Comparée 64, 268–9.CrossRefGoogle Scholar
Betschart, B. & Jenkins, J. M. (1987). Distribution of iodinated proteins in Dipetalonema viteae after surface labelling. Molecular and Biochemical Parasitology 22, 18.CrossRefGoogle ScholarPubMed
Bloom, B. R., Salgame, P., Chan, V., Mehra, S., Snapper, X., Fan, R., Modlin, T., Rea, M., Brennan, P., Convit, J. & Jacobs, W. R. (1989). Insights into immunoregulation and pathogenesis from a Third World disease. In Progress in Immunology, VII (ed. Melchers, F.), pp. 957–61. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Cabrera, Z., Cooper, M. D. & Parkhouse, R. M. E. (1986). Differential recognition patterns of human immunoglobulin classes to antigens of Onchocerca gibsoni. Tropical Medicine and Parasitology 37, 113–16.Google ScholarPubMed
Cabrera, Z. & Parkhouse, R. M. E. (1987). Isolation of an antigenic fraction for diagnosis of onchocerciasis. Parasite Immunology 9, 3948.CrossRefGoogle ScholarPubMed
Connor, V., Braun, G., Engelbrecht, F., Downham, M. & Taylor, D. W. (1988). Isolation and in vitro translation of Onchocerca volvulus mRNA. Tropical Medicine and Parasitology 39, 460–2.Google ScholarPubMed
Devaney, E. (1988). The biochemical and immunochemical characterisation of the 30 kilodalton surface antigen of Brugia pahangi. Molecular and Biochemical Parasitology 27, 8392.CrossRefGoogle ScholarPubMed
Diagne, M., Petit, G. & Bain, O. (1989) Maintien d'une filaire chez la souris. Comptes rendues de l'Académie des Sciences, Paris 309, Série III, 25–8.Google Scholar
Fazekas De St. Groth, S. & Scheidegger, D. (1980). Production of monoclonal antibodies: strategy and tactics. Journal of Immunological Methods 35, 121.CrossRefGoogle Scholar
Forsyth, K., Copeman, D. B. & Mitchell, G. F. (1984). Differences in the surface radioiodinated proteins of skin and uterine microfilariae of Onchocerca gibsoni. Molecular and Biochemical Parasitology 10, 217–29.CrossRefGoogle ScholarPubMed
Gallin, M., Edmonds, K., Ellner, J. J., Erttmann, K. D., White, A. T., Newland, H. S., Taylor, H. R. & Greene, B. M. (1988). Cell-mediated immune responses in human infection with Onchocerca volvulus. Journal of Immunology 140, 19992007.CrossRefGoogle ScholarPubMed
Garms, R. & Cheke, R. A. (1985). Infections with Onchocerca volvulus in different members of the Simulium damnosum complex in Togo and Benin. Zeitschrift für angewandte Zoologie 72, 479–95.Google Scholar
Ghalib, H. W., Mackenzie, C. D., Williams, J. F., Sisley, B. M. & El Khalifa, M. Y. (1985). Immunology and the development of pathology in onchocerciasis; studies in Sudan. Sudan Medical Journal 21 (Suppl.), 59–64.Google Scholar
Hussain, R., Grögl, M. & Ottesen, E. A. (1987). IgG antibody subclasses in human filariasis: different subclass recognition of parasite antigens correlates with different clinical manifestations of infection. Journal of Immunology 139, 2794–8.CrossRefGoogle ScholarPubMed
Kaushal, N. A., Hussain, R., Nash, T. E. & Ottesen, E. A. (1982). Identification and characterisation of excretory–secretory products of Brugia malayi, adult filarial parasites. Journal of Immunology 129, 338–43.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lucius, R., Schulz-Key, H., Büttner, D. W., Kern, A., Kaltmann, B., Prod'Hon, J., Seeber, F., Walter, R. D., Saxena, K. C. & Diesfeld, H. J. (1988). Characterisation of an immunodominant Onchocerca volvulus antigen with patient sera and a monoclonal antibody. Journal of Experimental Medicine 167, 1505–10.CrossRefGoogle ScholarPubMed
Luty, A. J. F., Downham, M. D., Whitworth, J. A. G., Morgan, D., McNicholas, A. & Taylor, D. W. (1990). Immunological studies on onchocerciasis in Sierra Leone. 1. Pretreatment baseline data. Tropical Medicine and Parasitology (in the Press).Google ScholarPubMed
Mackenzie, C. D. & Williams, J. F. (1985). Variations in the clinical presentation of onchocerciasis and their relationship to host–parasite interaction. Sudan Medical Journal 21 (Suppl.), 41–8.Google Scholar
Mackenzie, C. D., Williams, J. F., Sisley, B. M., Steward, M. W. & O'Day, J. (1985). Variations in host responses and the pathogenesis of human onchocerciasis. Reviews of Infectious Diseases 7, 802–8.CrossRefGoogle ScholarPubMed
Maizels, R. M., Gregory, W. F., Kwan-Lim, G.-E. & Selkirk, M. E. (1989). Filarial surface antigens: the major 29 kilodalton glycoprotein and a novel 17–200 kilodalton complex from adult Brugia malayi parasites. Molecular and Biochemical Parasitology 32, 213–28.CrossRefGoogle Scholar
Maizels, R. M., Partono, F., Oemijati, S., Denham, D. A. & Ogilvie, B. M. (1983). Cross-reactive surface antigens on three stages of Brugia malayi, B. pahangi and B. timori. Parasitology 87, 249–63.CrossRefGoogle ScholarPubMed
Maizels, R. M., Philipp, M., Dasgupta, A. & Partono, F. (1984). Human serum albumin is a major component on the surface of microfilariae of Wuchereria bancrofti. Parasite Immunology 6, 185–90.CrossRefGoogle Scholar
Maizels, R. M., Sutanto, I., Gomez-Priego, A., Lillywhite, J. & Denham, D. A. (1985). Specificity of surface molecules of adult Brugia parasites: cross-reactivity with antibody from Wuchereria, Onchocerca and other human filarial infections. Tropical Medicine and Parasitology 36, 233–7.Google ScholarPubMed
Morgan, T. M., Sutanto, I., Purnomo, S., Partono, F. & Maizels, R. M. (1986). Antigenic characterisation of adult Wuchereria bancrofti filarial nematodes. Parasitology 93, 559–69.CrossRefGoogle ScholarPubMed
Ottesen, E. A., Skvaril, F., Tripathy, S. P., Poindexter, R. W. & Hussain, R. (1985). Prominence of IgG4 in the IgG antibody response to human filariasis. Journal of Immunology 134, 2707–12.CrossRefGoogle ScholarPubMed
Pelham, H. R. B. & Jackson, R. J. (1976). An efficient mRNA dependent translation system from reticulocyte lysates. European Journal of Biochemistry 67, 247–65.CrossRefGoogle ScholarPubMed
Philipp, M., Gomez-Priego, A., Parkhouse, R. M. E., Davies, M. W., Clark, N. W. T., Ogilvie, B. M. & Beltran-Hernandez, F. (1984 a). Identification of an antigen of Onchocerca volvulus of possible diagnostic use. Parasitology 89, 295309.CrossRefGoogle ScholarPubMed
Philipp, M., Worms, M. J., McLaren, D. J., Ogilvie, B. M., Parkhouse, R. M. E. & Taylor, P. M. (1984 b). Surface proteins of a filarial nematode: a major soluble antigen and a host component on the cuticle of Litomosoides carinii. Parasite Immunology 6, 6382.CrossRefGoogle Scholar
Pritchard, D. I., Crawford, C. R., Duce, I. R. & Behnke, J. M. (1985). Antigen stripping from the nematode epicuticle using the cationic detergent cetyltrimethylammonium bromide (CTAB). Parasite Immunology 7, 575–85.CrossRefGoogle ScholarPubMed
Schulz-Key, H., Albiez, E. J. & Büttner, D. W. (1977). Isolation of living adult Onchocerca volvulus from nodules. Tropenmedizin und Parasitologie 28, 428–30.Google ScholarPubMed
Selkirk, M. E., Nielsen, L., Kelly, C., Partono, F., Sayers, G. & Maizels, R. M. (1989). Identification, synthesis and immunogenicity of cuticular collagens from the filarial nematodes Brugia malayi and Brugia pahangi. Molecular and Biochemical Parasitology 32, 229–46.CrossRefGoogle ScholarPubMed
Sutanto, I., Maizels, R. M. & Denham, D. A. (1985). Surface antigens of a filarial nematode: analysis of adult Brugia pahangi surface components and their use in monoclonal antibody production. Molecular and Biochemical Parasitology 15, 203–14.CrossRefGoogle ScholarPubMed
Taylor, D. W. & Butterworth, A. E. (1982). Monoclonal antibodies against surface antigens of schistosomula of Schistosoma mansoni. Parasitology 84, 6582.CrossRefGoogle ScholarPubMed
Taylor, D. W., Cordingley, J. S. & Butterworth, A. E. (1984). Immunoprecipitation of surface antigen precursors from Schistosoma mansoni messenger RNA in vitro translation products. Molecular and Biochemical Parasitology 10, 305–18.CrossRefGoogle ScholarPubMed
Taylor, D. W., Goddard, J. M. & McMahon, J. E. (1986). Surface components of Onchocerca volvulus. Molecular and Biochemical Parasitology 18, 283300.CrossRefGoogle ScholarPubMed
Toufic, N. (1969 a). Onchocerciasis in Natitingou, Republic of Dahomey. Bulletin de la Société de Pathologie Éxotique et de ses Filiales 62, 920–4.Google ScholarPubMed
Toufic, N. (1969 b). Onchocerciasis in Mono area, Republic of Dahomey. Bulletin de la Société de Pathologie Éxotique et de ses Filiales 62, 925–31.Google ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Ward, D. J., Nutman, T. B., Zea-Flores, G., Portocarrero, C., Lujan, A. & Ottesen, E. (1988). Onchocerciasis and immunity in humans: enhanced T-cell responsiveness to parasite antigen in putatively immune individuals. Journal of Infectious Diseases 157, 536–43.CrossRefGoogle ScholarPubMed
Weiss, N., Speiser, F. & Hussain, R. (1981). IgE antibodies in human onchocerciasis. Application of a newly developed radioallergosorbent test (RAST). Acta Tropica 38, 353–62.Google ScholarPubMed
Whitworth, J. A. G., Morgan, D., Maude, G., Downham, M D. & Taylor, D. W. (1990). A community-based trial of ivermectin for onchocerciasis. Description of study population and clinical and parasitological responses to initial dose. Transactions of the Royal Society of Tropical Medicine and Hygiene (in the Press).Google Scholar