Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T12:05:19.741Z Has data issue: false hasContentIssue false

Rodents as shared indicators for zoonotic parasites of carnivores in urban environments

Published online by Cambridge University Press:  21 January 2009

L. A. REPERANT
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057Zurich, Switzerland
D. HEGGLIN
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057Zurich, Switzerland
I. TANNER
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057Zurich, Switzerland
C. FISCHER
Affiliation:
Department of Ecology and Evolution, University of Lausanne, Bâtiment de Biologie, CH-1015Lausanne, Switzerland
P. DEPLAZES*
Affiliation:
Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057Zurich, Switzerland
*
*Corresponding author: Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057Zurich, Switzerland. Tel: +41 44 63 58 501. Fax: +41 44 63 58 907. E-mail: deplazesp@access.uzh.ch

Summary

Rodents are shared intermediate or paratenic hosts for Echinococcus multilocularis, Toxocara spp. and Toxoplasma gondii, and may serve as valuable indicators for assessing the occurrence and the level of environmental contamination and infection pressure with free-living stages of these zoonotic parasites. We investigated 658 non-commensal rodents for parasite infections in the canton of Geneva, Switzerland. The prevalence of infection with E. multilocularis was highest in Arvicola terrestris captured in the north-western area (16·5%, CI: 10·1%–24·8%), possibly reflecting a higher red fox density due to the low incidence of sarcoptic mange in this part of the canton. The exposure rate to Toxocara spp. was highest in the urban area (13·2%, CI: 7·9%–20·3%), and may account for higher densities of domestic carnivore and red fox definitive hosts within the city. Exposure to T. gondii was widespread (5·0%, CI: 3·2–7·4%), indicating a ubiquitous distribution of infected cat definitive hosts. Interestingly, a widespread distribution of Taenia taeniaeformis, a parasite mainly transmitted by cats, was similarly evidenced in A. terrestris. Distinct spatial patterns for the different zoonotic parasites likely reflected differences in distribution, abundance, and habitat use of the respective definitive hosts. These results highlight the potential value of rodents as shared indicators for these pathogens.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, E., Thulliez, P. and Gilot-Fromont, E. (2006). Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). International Journal for Parasitology 36, 13731382.CrossRefGoogle Scholar
Antolova, D., Reiterova, K., Miterpakova, M., Stanko, M. and Dubinsky, P. (2004). Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Veterinary Parasitology 126, 317324.CrossRefGoogle ScholarPubMed
Aramini, J. J., Stephen, C., Dubey, J. P., Engelstoft, C., Schwantje, H. and Ribble, C. S. (1999). Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiology and Infection 122, 305315.CrossRefGoogle ScholarPubMed
Bonnin, J. L., Delattre, P., Artois, M., Pascal, M., Aubert, M. F. and Petavy, A. F. (1986). [Intermediate hosts of Echinococcus multilocularis in northeastern France. Description of lesions found in 3 naturally infested rodent species]. Annales de Parasitologie Humaine et Comparée 61, 235243.CrossRefGoogle ScholarPubMed
Brohmer, P. (1988). Fauna von Deutschland. Quelle and Meyer Verlag, Heidelberg – Wiesbaden, Germany.Google Scholar
Calhoon, R. E. and Haspel, C. (1989). Urban cat populations compared by season, subhabitat and supplemental feeding. The Journal of Animal Ecology 58, 321328.CrossRefGoogle Scholar
Childs, J. E., Glass, G. E. and Korch, G. W. Jr. (1988). The comparative epizootiology of Capillaria hepatica (Nematoda) in urban rodents from different habitats of Baltimore, Maryland. Canadian Journal of Zoology 66, 27692775.CrossRefGoogle Scholar
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404413.CrossRefGoogle Scholar
Contesse, P., Hegglin, D., Gloor, S., Bontadina, F. and Deplazes, P. (2003). The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zürich, Switzerland. Mammalian Biology 69, 8195.CrossRefGoogle Scholar
Cuéllar, C., Fenoy, S. and Guillén, J. L. (1995). Cross-reactions of sera from Toxascaris leonina and Ascaris suum infected mice with Toxocara canis, Toxascaris leonina and Ascaris suum antigens. International Journal for Parasitology 25, 731739.CrossRefGoogle ScholarPubMed
Danson, F. M., Giraudoux, P. and Craig, P. S. (2006). Spatial modelling and ecology of Echinococcus multilocularis transmission in China. Parasitology International 55, S227S231.CrossRefGoogle ScholarPubMed
Deplazes, P., Hegglin, D., Gloor, S. and Romig, T. (2004). Wilderness in the city, the urbanization of Echinococcus multilocularis. Trends in Parasitology 20, 7784.CrossRefGoogle ScholarPubMed
Deplazes, P., Grimm, F., Sydler, T., Tanner, I. and Kapel, C. M. (2005). Experimental alveolar echinococcosis in pigs, lesion development and serological follow up. Veterinary Parasitology 130, 213222.CrossRefGoogle ScholarPubMed
Despommier, D. (2003). Toxocariasis, clinical aspects, epidemiology, medical ecology, and molecular aspects. Clinical Microbiology Reviews 16, 265272.CrossRefGoogle ScholarPubMed
Dickman, C. R. (1987). Habitat fragmentation and vertebrate species richness in an urban environment. The Journal of Applied Ecology 24, 337351.CrossRefGoogle Scholar
Dickman, C. R. and Doncaster, C. P. (1987). The ecology of small mammals in urban habitats. I. Populations in a patchy environment. The Journal of Animal Ecology 56, 629640.CrossRefGoogle Scholar
Dubinsky, P., Havasiova-Reiterova, K., Petko, B., Hovorka, I. and Tomasovicova, O. (1995). Role of small mammals in the epidemiology of toxocariasis. Parasitology 110, 187193.CrossRefGoogle ScholarPubMed
Dubna, S., Langrova, I., Jankovska, I., Vadlejch, J., Pekar, S., Napravnik, J. and Fechtner, J. (2007). Contamination of soil with Toxocara eggs in urban (Prague) and rural areas in the Czech Republic. Veterinary Parasitology 144, 8186.CrossRefGoogle ScholarPubMed
Dumetre, A. and Darde, M. L. (2003). How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews 27, 651661.CrossRefGoogle ScholarPubMed
Eckert, J. and Deplazes, P. (2004). Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Reviews 17, 107135.CrossRefGoogle ScholarPubMed
Fischer, C., Reperant, L. A., Weber, J. M., Hegglin, D. and Deplazes, P. (2005). Echinococcus multlocularis infections of rural, residential and urban foxes (Vulpes vulpes) in the canton of Geneva, Switzerland. Parasite 12, 339346.CrossRefGoogle Scholar
Giacometti, A., Cirioni, O., Fortuna, M., Osimani, P., Antonicelli, L., Del Prete, M. S., Riva, A., D'Errico, M. M., Petrelli, E. and Scalise, G. (2000). Environmental and serological evidence for the presence of toxocariasis in the urban area of Ancona, Italy. European Journal of Epidemiology 16, 10231026.CrossRefGoogle ScholarPubMed
Greiner, M., Franke, C. R., Bohning, D. and Schlattmann, P. (1994). Construction of an intrinsic cut-off value for the sero-epidemiological study of Trypanosoma evansi infections in a canine population in Brazil: a new approach towards an unbiased estimation of prevalence. Acta Tropica 56, 97109.CrossRefGoogle Scholar
Habluetzel, A., Traldi, G., Ruggieri, S., Attili, A. R., Scuppa, P., Marchetti, R., Menghini, G. and Esposito, F. (2003). An estimation of Toxocara canis prevalence in dogs, environmental egg contamination and risk of human infection in the Marche region of Italy. Veterinary Parasitology 113, 243252.CrossRefGoogle ScholarPubMed
Harris, S. (1981). An estimation of the number of foxes (Vulpes vulpes) in the city of Bristol, and some possible factors affecting their distribution. The Journal of Applied Ecology 18, 455465.CrossRefGoogle Scholar
Hegglin, D. , D., Bontadina, F., Contesse, P., Gloor, S. and Deplazes, P. (2007). Plasticity of predation behaviour as a putative driving force for parasite life-cycle dynamics, the case of urban foxes and Echinococcus multilocularis tapeworm. Functional Ecology 21, 552560.CrossRefGoogle Scholar
Hill, D. and Dubey, J. P. (2002). Toxoplasma gondii, transmission, diagnosis and prevention. Clinical Microbiology and Infection 8, 634640.CrossRefGoogle ScholarPubMed
Hofer, S., Gloor, S., Müller, U., Mathis, A., Hegglin, D. and Deplazes, P. (2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 120, 135142.CrossRefGoogle ScholarPubMed
Kapel, C. M., Torgerson, P. R., Thompson, R. C. A. and Deplazes, P. (2006). Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon, dogs and cats. International Journal for Parasitology 36, 7986.CrossRefGoogle ScholarPubMed
Loos-Frank, B. and Zeyhle, E. (1982). The intestinal helminths of the red fox and some other carnivores in southwest Germany. Zeitschrift für Parasitenkunde 67, 99113.CrossRefGoogle ScholarPubMed
Matter, H. C. and Daniels, T. J. (2001). Dog ecology and population biology. In Dogs, Zoonoses and Public Health (ed. MacPherson, C. N. L., Meslin, F. X. and Wandeler, A. I., CABI Publishing, Wallingford, Oxon., UK.Google Scholar
McKinney, M. L. (2002). Urbanization, biodiversity, and conservation. BioScience 52, 883890.CrossRefGoogle Scholar
Mizgajska, H. (1997). The role of some environmental factors in the contamination of soil with Toxocara spp. and other geohelminth eggs. Parasitology International 46, 4672.CrossRefGoogle Scholar
Mizgajska, H. (2001). Eggs of Toxocara spp. in the environment and their public health implications. Journal of Helminthology 75, 147151.Google ScholarPubMed
Müller, N., Zimmermann, V., Hentrich, B. and Gottstein, B. (1996). Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridization immunoassay. Journal of Clinical Microbiology 34, 28502852.CrossRefGoogle ScholarPubMed
O'Lorcain, P. (1994). Epidemiology of Toxocara spp. in stray dogs and cats in Dublin, Ireland. Journal of Helminthology 68, 331336.CrossRefGoogle ScholarPubMed
Pence, D. B. and Ueckermann, E. (2002). Sarcoptic mange in wildlife. Revue Scientifique et Technique de l'Office International des Epizooties 21, 385398.CrossRefGoogle ScholarPubMed
Pleydell, D. R., Raoul, F., Tourneux, F., Danson, F. M., Graham, A. J., Craig, P. S. and Giraudoux, P. (2004). Modelling the spatial distribution of Echinococcus multilocularis infection in foxes. Acta Tropica 91, 253265.CrossRefGoogle ScholarPubMed
Raoul, F., Michelat, D., Ordinaire, M., Decote, Y., Aubert, M., Delattre, P., Deplazes, P. and Giraudoux, P. (2003). Echinococcus multilocularis, secondary poisoning of fox population during a vole outbreak reduces environmental contamination in a high endemicity area. International Journal for Parasitology 33, 945954.CrossRefGoogle Scholar
Reperant, L. A. and Deplazes, P. (2005). Cluster of Capillaria hepatica infections in non-commensal rodents from the canton of Geneva, Switzerland. Parasitology Research 96, 340342.CrossRefGoogle ScholarPubMed
Reperant, L. A., Hegglin, D., Fischer, C., Kohler, L., Weber, J. M. and Deplazes, P. (2007). Influence of urbanization on the epidemiology of intestinal helminths of the red fox (Vulpes vulpes) in Geneva, Switzerland. Parasitology Research 101, 605611.CrossRefGoogle ScholarPubMed
Robardet, E., Giraudoux, P., Caillot, C., Boue, F., Cliquet, F., Augot, D. and Barrat, J. (2008). Infection of foxes by Echinococcocus multilocularis in urban and suburban areas of Nancy, France: influence of feeding habits and environment. Parasite 15, 7785.CrossRefGoogle Scholar
Speiser, F. and Gottstein, B. (1984). A collaborative study on larval excretory/secretory antigens of Toxocara canis for the immunodiagnosis of human toxocariasis with ELISA. Acta Tropica 41, 361372.Google Scholar
Stieger, C., Hegglin, D., Schwarzenbach, G., Mathis, A. and Deplazes, P. (2002). Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitology 124, 631640.CrossRefGoogle ScholarPubMed
Viel, J. F., Giraudoux, P., Abrial, V. and Bresson-Hadni, S. (1999). Water vole (Arvicola terrestris scherman) density as risk factor for human alveolar echinococcosis. American Journal of Tropical Medicine and Hygiene 61, 559565.CrossRefGoogle ScholarPubMed
Vuitton, D. A., Zhou, H., Bresson-Hadni, S., Wang, Q., Piarroux, M., Raoul, F. and Giraudoux, P. (2003). Epidemiology of alveolar echinococcosis with particular reference to China and Europe. Parasitology 127, S87S107.CrossRefGoogle ScholarPubMed
Weber, J. M. and Aubry, S. (1993). Predation by foxes, Vulpes vulpes, on the fossorial form of the water vole, Arvicola terrestris scherman, in western Switzerland. Journal of Zoology, London 229, 553559.CrossRefGoogle Scholar
Wyss, R., Sager, H., Müller, N., Inderbitzin, F., König, M., Audigé, L. and Gottstein, B. (2000). [The occurrence of Toxoplasma gondii and Neospora caninum as regards meat hygiene]. Schweizer Archiv für Tierheilkunde 142, 95108.Google ScholarPubMed